
Illumio Core for Kubernetes

Published: 2025

This document provides an overview of how you can use Illumio Core with Kubernetes or OpenShift.

Table of Contents
Kubernetes and Openshift 6

Overview of Containers in Illumio Core 6
Before You Begin 6
Recommended Skills 6
Architecture 6

Configure Labels for Namespaces, Pods, and Services 11
Use Container Workload Profiles 11
Container Workload Profile Restriction 19
Using Annotations 20

Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later) 27
Helm Chart Deployment Overview 28
Host and Cluster Requirements 28
Prepare Your Environment 29
Create a Container Cluster in the PCE 34
Create a Pairing Profile for Your Cluster Nodes 36
Map Kubernetes Node or Workload Labels to Illumio Labels 37
Deploy with Helm Chart 39
Re-Label Your Cluster Nodes 43
Generating YAML Manifests for Manual Deployment 44

Deployment for C-VEN Versions 21.5.15 or Earlier 45
Host and Cluster Requirements 46
Prepare Your Environment 47
Create a Container Cluster in the PCE 55
Deploy C-VENs in Your Cluster 57
Re-Label Your Cluster Nodes 63

Configure Security Policies for Containerized Environments 63
IP and FQDN Lists 63
Rules for Kubernetes or OpenShift Clusters 65
Rules and Traffic Considerations with CLAS 69
Rules for Containerized Applications 71
Rules for Persistent Storage 79
Local Policy Convergence Controller 80
Firewall Coexistence on Pods 84

Upgrade and Uninstallation 86
Migrate from Previous C-VEN Versions (21.5.15 or Earlier) 86
Upgrade and Uninstall Helm Chart Deployments 89
Upgrade and Uninstall Non-Helm Chart Deployments 90
Upgrade to CLAS Architecture 92

Prepare OpenShift for Illumio Core 96
Unique Machine ID 96
Create Labels 97
Create Pairing Profiles 97
Deploy Kubelink 98
Implement Kubelink with a Private PKI 103
Install and Pair VENs for Containers 108
Manage OpenShift Namespaces 108

Troubleshooting 113
Kubelink Support Bundle 113
Helm deployment (and uninstall) fails with C-VEN stuck in Container-
Creating state 114
Failed Authentication with the Container Registry 115
Kubelink Pod in CrashLoopBackOff State 117
Container Cluster in Error 118

Illumio Core for Kubernetes

3

Pods and Services Not Detected 119
Pods Stuck in Terminating State 120
Enable Firewall Coexistence 120
...... 121
Troubleshooting CLAS Mode Architecture 121
Aggregating Logs from Kubelink and C-VEN Pods 124
Kubelink Monitoring and Troubleshooting 128
Known Limitations 134

Illumio Core for Kubernetes Release Notes 5.3 136
What's New in Illumio Core for Kubernetes 5.3.1 136

Product Version 136
What's New in Release 5.3.1 136
Limitations 137
Base Image Upgraded 138

Resolved Issues in 5.3.1 138
Resolved Issues 139

Illumio Core for Kubernetes Release Notes 5.2 140
About Illumio Core for Kubernetes 5.2 140

Product Version 140
Updates for Core for Kubernetes 5.2.3 140

Kubelink 140
Updates for Core for Kubernetes 5.2.2 140

C-VEN 141
What's New in Release 5.2.1 141
Updates for Core for Kubernetes 5.2.1 141

Kubelink 141
C-VEN 141

What's New in Release 5.2.0 142
Resource Allocation Guidelines 143
"Wait For Policy" Feature 145

Updates for Core for Kubernetes 5.2.0 147
Kubelink 147
C-VEN 147

Illumio Core for Kubernetes Release Notes 5.1 149
Core for Kubernetes 5.1.10 149
Limitations 149
Updates for Core for Kubernetes 5.1.10 150

Kubelink 150
Updates for Core for Kubernetes 5.1.7 150

Kubelink 150
Updates for Core for Kubernetes 5.1.3 151

Kubelink 151
Updates for Core for Kubernetes 5.1.2 151

Kubelink 151
Updates for Core for Kubernetes 5.1.0 152

What's New in the 5.1.0 Release 152
C-VEN 153
Kubelink 153

Security Information for Core for Kubernetes 5.1 154
Illumio Core for Kubernetes Release Notes 5.0.0 155

About Illumio Core for Kubernetes 5.0 155
Product Version 155
What's New in C-VEN and Kubelink 155
NodePort Limitations 156
Updates for Core for Kubernetes 5.0.0-LA 156

Illumio Core for Kubernetes

4

C-VEN 156
Kubelink 157
Security Information for Core for Kubernetes 5.0.0-LA 158

Illumio Core for Kubernetes Release Notes 4.3.0 159
What's New in Kubernetes 4.3.0 159

Security Information 159
Base Image Upgraded 159

Product Version 159
Updates for Core for Kubernetes 4.3.0 160

C-VEN 160
Kubelink 160

Legal Notice 162

Illumio Core for Kubernetes

5

Kubernetes and Openshift

Overview of Containers in Illumio Core
This section describes the architecture, key concepts, and the integration requirements to
use Illumio Core with Kubernetes or OpenShift.

Before You Begin

• Prepare your environment
• Create a container cluster in the PCE
• Deploy Kubelink and C-VENs in your cluster
• Configure labels for namespaces, pods, and services
• Configure security policies for containerized environments
• Upgrade and uninstall the C-VEN in your containerized environments
• Migrate to a Helm Chart deployment from a previously-installed C-VEN deployment

Recommended Skills

• Illumio Core
• Linux shell (bash)
• TCP/IP networks, including protocols and well-known ports and a familiarity with PKI certif-

icates
• Docker concepts, such as containers, container images, and docker commands.

See Get Started with Docker.
• Red Hat OpenShift Container Platform.

See OpenShift Documentation.
• Kubernetes concepts, such as clusters, Pod, and services.

See Kubernetes Documentation.

Architecture

With the increased adoption of containers, the threat of unauthorized lateral movement
from vulnerabilities and exploits increases considerably in the east-west attack surface. In
addition, Destinations and Sources may be other containers, bare-metal servers, or virtual
machines running on-premises or in the cloud. Multiple disparate solutions create complexity
in management and operational workflow, leaving your organization more open to attack.

Illumio Core provides a homogenous segmentation solution for your applications regardless
of where they are running - bare-metal servers, virtual machines, or containers. It is a single
unified solution with many points of integration, including how you can easily and quickly
secure your applications regardless of their location or form.

A container is a loosely defined construct that abstracts a group of processes into an ad-
dressable entity, which can run application instances inside it. Containers are implemented
using Linux namespaces and cgroups, allowing you to virtualize and limit system resources.

Illumio Core for Kubernetes

6

https://docs.docker.com/get-started/
https://docs.openshift.com/?extIdCarryOver=true&sc_cid=701f2000001OH74AAG
https://kubernetes.io/docs/home/?path=users&persona=app-developer&level=foundational

Since containers operate at a process-level and share the host OS, they require fewer resour-
ces than virtual machines. The isolation mechanism provided through Linux namespaces al-
lows containers to have unique IP addresses. Illumio Core uses these mechanisms to program
iptables in the network namespace.

Kubernetes-based orchestration platforms such as native Kubernetes and Red Hat OpenShift
integrate with Core by using the following two components in the cluster:

• Kubelink - An Illumio software component that listens to events stream on the Kubernetes
API server.
CLAS - (Cluster Local Actor Store) A new architecture introduced in Core for Kubernetes
5.0.0, When Kubelink is enabled with CLAS, it tracks Pods at the Kubernetes Workload
level, and dispenses any existing policy for them, reducing the load on and interaction with
the Policy Compute Engine (PCE), which improves scalability, responsiveness, and overall
system performance.

• Containerized VEN (C-VEN) - An Illumio software component that provides visibility and
enforcement on the nodes and the Pods.

The following sections describe some key concepts of the Illumio Core for Kubernetes solu-
tion, including more details about its main components, the C-VEN and Kubelink.

Containerized VEN (C-VEN)
The C-VEN provides visibility and enforcement on nodes and Pods. In a standard Illumio
deployment the Virtual Enforcement Node (VEN) is installed on the host as a package. In
contrast, the C-VEN is not installed on the host but runs as a Pod on the Kubernetes nodes.
The C-VEN functions in the same manner as a standard Illumio VEN. However, in order to
program iptables on the node and Pods namespaces, the C-VEN requires privileged access
to the host. For details on the privileges required by the C-VEN, see Privileges [28].

The C-VENs are delivered as a DaemonSet, with one replica per host in the Kubernetes
cluster. A C-VEN Pod instance is required on each node in the cluster to ensure proper
segmentation in your environment. In self-managed deployments, C-VENs are deployed on
all nodes in the cluster. In cloud-managed deployments, C-VENs are deployed only on the
Worker nodes and not on the Master nodes (Master nodes are not managed by Cloud cus-
tomers).

Kubelink
Kubelink is a software component provided by Illumio to make the integration between
the PCE and Kubernetes easier. Starting in Illumio Core for Kubernetes 5.0.0, Kubelink is
enhanced with a Cluster Local Actor Store (CLAS) module, that handles the workload-to-Pod
relationship via C-VEN communication. See Cluster Local Actor Store (CLAS) below for de-
tails on how Kubelink in CLAS mode operates. The remainder of this description of Kubelink
describes its basic, non-CLAS behavior.

Kubelink queries Kubernetes APIs to discover nodes, networking details, and services and
synchronizes them between the Kubernetes cluster and the PCE. Kubelink reports network
information to the PCE, enabling the PCE to understand the cluster network for both the
hosts and the Pods in the cluster. This enables the PCE to both accurately visualize the
communication flow and create the correct policies for the C-VENs to implement in the
iptables of the host and the Pods. It provides flexibility in the type of networking used with
the cluster. Kubelink also associates C-VENs with the particular container cluster by matching

Illumio Core for Kubernetes

7

a unique identifier of the underlying OS called machine-id reported by each C-VEN with the
one reported by the Kubernetes cluster.

Kubelink is delivered as a Deployment with only one replica within the Kubernetes cluster.
One Kubelink Pod instance is required per cluster. There is no node affinity required for
Kubelink, so the Kubelink Pod can be spun up on either a Master or Worker node.

Cluster Local Actor Store (CLAS)
A Cluster Local Actor Store (CLAS) mode is introduced into the architecture of Illumio Core
for Kubernetes 5.0.0. When this mode is enabled, Kubelink still interacts with the Kubernetes
API to track and manage Kubernetes components, and their interaction with PCE and C-
VENs. This includes policy flowing from PCE to C-VENs, and traffic flowing from C-VENs to
PCE.

Within the CLAS architecture, Kubelink provides greater scalability, faster responsiveness,
and streamlined policy convergence with several key improvements. For example:

• Kubelink now discovers that a new Pod is being created directly from a Kubernetes API
event. While Kubernetes (via Kubelet) continues with the process of downloading the
proper images, and starting the Pod, Kubelink in CLAS mode is in parallel delivering policy
for the emerging Pod to the proper C-VEN to apply.
Because CLAS stores (caches) all existing policies that have been calculated, C-VENs can
get matching policies directly from the CLAS cache without needing to communicate with
the PCE, which also improves convergence times.

• With Kubelink now a full intermediary between the PCE and the C-VENs, and maintaining a
store of workload data, the C-VENs report traffic flow not to the PCE directly, but now to
Kubelink, which "decorates" the flows with the proper Workload IDs based on IP addresses
on either end, and then sends this information to the PCE.

The following graphic illustrates the basic difference between the new CLAS architecture and
the legacy non-CLAS architecture:

CLAS Degraded Mode
To ensure robustness of policy enforcement and traffic flow in the CLAS architecture, Kube-
link and C-VEN can operate in degraded mode. If a CLAS-enabled Kubelink detects that its

Illumio Core for Kubernetes

8

connection with the PCE becomes unavailable (for example, due to connectivity problems or
an upgrade), Kubelink by default enters this degraded mode.

In degraded mode, new Pods of existing Kubernetes Workloads get the latest policy version
cached in CLAS storage. When Kubelink detects a new Kubernetes Workload labeled the
same way and in the same namespace as an existing Kubernetes Workload, Kubelink delivers
the existing, cached policy to Pods of this new Workload.

If Kubelink cannot find a cached policy (that is, when labels of a new Workload do not match
those of any existing Workload in the same namespace), Kubelink delivers a "fail open" or
"fail closed" policy to the new Workload based on the Helm Chart parameter degradedMode-
PolicyFail. The degraded mode can also be turned on or off by Helm Chart parameter
as well -- disableDegradedMode. For more details on degraded mode, see the section on
"disableDegradedMode and degradedModePolicyFail" in Deploy with Helm Chart [39]

Kubernetes Workloads
Starting in Illumio Core for Kubernetes 5.0.0, the concept of Kubernetes Workloads is intro-
duced in CLAS-enabled environments as the front-end for the Deployment of an application
or service. In contrast to the Container Workload concept used previously (and still used in
non-CLAS environments), Kubernetes Workloads now closely match the typical definition of
workloads in Kubernetes and similar container orchestration platforms.

Therefore, Kubernetes Workloads as shown in the PCE Web UI are any workloads that have
Pods, including but not limited to Deployment or DaemonSet workloads. StatefulSet, De-
ploymentConfig, ReplicationControler, ReplicaSet, CronJob, Job, Pod, and ClusterIP are also
modeled as Kubernetes Workloads in CLAS mode. Kubernetes Workloads replace Container
Workloads in the non-CLAS mode.

Container Workloads
Container Workloads are reported only in non-CLAS environments. In these environments,
Container Workloads are basic containers (as with Docker), or the smallest resource that
can be assimilated within a container in an orchestration system (as with Kubernetes). In
the context of Kubernetes and OpenShift, a Pod is a container workload. Similar to work-
loads reported in Illumio Core, these container workloads (managed Pods) can have labels
assigned to them. Container workloads with their associated Illumio labels are also displayed
in Illumination. In Illumio Core non-CLAS environments, containers are differentiated based
on whether they are on the Pod network or the host network:

• Containers on the Pod network are considered container workloads and can be managed
similarly to workloads.

• Containers sharing the host network stack (Pods that are host networked) are not consid-
ered as container workloads and therefore inherit the labels and policies of the host.

To manage container workloads, you can define the Policy Enforcement mode (Full, Selec-
tive, or Visibility Only) in container workload profiles.

Illumio Core for Kubernetes

9

NOTE
Container Workloads are relevant only in non-CLAS environments. CLAS-en-
abled environments instead use the concept of Kubernetes Workloads in Illu-
mio Core, which more closely maps to the standard Kubernetes workload
concept of an application that is run on any number of dynamically-created
(or destroyed) Pods.

Workloads
A workload is commonly referred to as a host OS in Illumio Core. In the context of container
clusters, a workload is referred to as a node in a container cluster. Usually, a Kubernetes
cluster is composed of two types of nodes:

• One or more Master Node(s) - In the control plane of the cluster, these nodes control and
manage the cluster.

• One or more Worker Node(s) - In the data plane of the cluster, these nodes run the
application (containers).

In Illumio Core, Master and Worker nodes are called workloads and are part of a container
cluster. Labels and policies can be applied to these workloads, similar to any other workload
that does not run containers. For a managed Kubernetes solution, only the Worker nodes are
visible to the administrator and the Master nodes are not displayed in the list of Workloads.

Virtual Services
Virtual services are labeled objects and can be utilized to write policies for the respective
services and the member Pods they represent.

Kubernetes services are represented as virtual services in the Illumio policy model. Kubelink
creates a virtual service in the PCE for services in the Kubernetes cluster. Kubelink reports
the list of Replication Controllers, DaemonSets, and ReplicaSets that are responsible for
managing the Pods supporting that service.

In CLAS mode, only NodePort and LoadBalancer services are reported in the PCE UI as
virtual services. Replication Controllers, DaemonSets, and ReplicaSets are no longer reported
as virtual service backends in CLAS.

Container Cluster
A container cluster object is used to store all the information about a Kubernetes cluster
in the PCE by collecting telemetry from Kubelink. Each Kubernetes cluster maps to one
container cluster object in the PCE. Each Pod network(s) that exists on a container cluster is
uniquely identified on the PCE in order to handle overlapping subnets. This helps the PCE in
differentiating between container workloads that may have the same IP address but are run-
ning on two different container clusters. This differentiation is required both for Illumination
and for policy enforcement.

You can see the workloads that belong to a container cluster in the PCE Web Console. This
mapping between the host workload and the container cluster is done using machine-ids
reported by Kubelink and C-VEN.

Illumio Core for Kubernetes

10

Container Workload Profiles
A Container Workload Profile maps to a Kubernetes namespace and defines:

• Policy Enforcement state (Full, Selective, or Visibility Only) for the Pods and services that
belong to the namespace.

• Labels assigned to the Pods and services. Standard predefined label types were Role,
Application, Environment, and Location. Newer releases of Core allow you to define your
own custom label types and label values for these types.

After Illumio Core is installed on a container cluster, all namespaces that exist on the clusters
are reported by Kubelink to the PCE and made visible using Container Workload Profiles.
Each time Kubelink detects the creation of a namespace from Kubernetes, a corresponding
Container Workload Profile object gets dynamically created in the PCE.

After creating a Container Workload Profile, copy the pairing key that is automatically gen-
erated and save it. Use this key for the cluster_code Helm Chart parameter value when
installing.

Each profile can either be in a managed or unmanaged state. The default state for a profile is
unmanaged. The main difference between both states:

• Unmanaged: No policy applied to Pods by the PCE and no visibility
• Managed: Policy is controlled by the PCE and full visibility through Illumination and traffic

explorer

In a CLAS environment, Kubernetes Workloads are displayed only for managed Container
Workload Profiles.

A Container Workload Profile is a convenient way to dynamically secure new applications
with Illumio Core by inheriting security policies associated with the scope of that profile.

Configure Labels for Namespaces, Pods, and Services
Once Kubelink is deployed onto the Kubernetes cluster and it gets synced with the PCE,
the namespaces within the cluster appear as Container Workload Profiles. By default, all
namespaces are unmanaged, which means Illumio does not apply any inbound or outbound
controls to the Pods within those namespaces. Any Pods or services within unmanaged
namespaces do not show up in the PCE inventory or in Illumination.

Use Container Workload Profiles

The Illumio PCE administrator can change a Kubernetes namespace from unmanaged to
managed by modifying the Container Workload Profile. Each profile can be modified even
if the Illumio C-VEN is not yet installed on the Kubernetes nodes. If the C-VEN is deployed
on the cluster nodes and Container Workload Profile is in the managed state, the Pods and
services are displayed in Illumination and they inherit the labels assigned to the Kubernetes
namespace. The Pods are represented in Illumio Core as Container Workloads. If Kubernetes
services exist in the respective namespace, Illumio Core represents each service as an Illumio
Core Virtual Service object.

Illumio Core for Kubernetes

11

This section describes how to change a namespace from unmanaged to managed and how
to use edit labels and use custom annotations to add more context to your applications. This
section also describes how to set enforcement boundaries for your containerized workloads.

1. Log in to the PCE UI and navigate to Infrastructure > Container Clusters.
2. Select the Container Cluster you want to manage.
3. Select the Container Workload Profiles tab.
4. You will see a list of all namespaces in the cluster. Select the namespace you want to

manage.
5. Click Edit:

a. Enter a Name (optional).
b. Select a Management state (any state, except unmanaged).
c. Select an Enforcement mode for how policy rules will be enforced.
d. Select a Visibility state.
e. Assign Labels (optional).
f. Click Save.

Configure New Container Workload Profiles
A Container Workload Profile is beneficial when you want to assign labels to resources that
are deployed in a namespace and also define the state of the policy created for the scope of
labels assigned. A new Container Workload Profile can be created in either of the following
ways:

• Dynamically created through the creation of a new namespace in the Kubernetes or Open-
Shift cluster. This is a reactive option in which the Illumio Core Administrator assigns labels
and a policy state after the creation of the namespace.

• Manually pre-created to assign labels and a policy state to a namespace that will be cre-
ated later on. This is a proactive option in which the Illumio Core Administrator assigns
labels and a policy state before the creation of the namespace. This option offers the
best-in-class security mechanism and authenticates each namespace created in the cluster
by leveraging the concept of pairing key (same concept that Illumio Core provides in a
pairing profile).

TIP
For a best-in-class security deployment, Illumio recommends to proactively
create pairing profiles and assign labels and a policy state to them. The pair-
ing key for each profile can be provided to the DevOps team for namespaces
deployments later on.

When a Container Cluster is created for the first time in the PCE, Kubelink will report the ex-
isting namespaces or projects in the cluster. These namespaces will inherit what was defined
as part of the Container Workload Profile Template for that cluster.

Dynamic Creation of a Profile
When the team managing Kubernetes or OpenShift clusters creates a namespace in a cluster,
this namespace is reported immediately to the PCE via Kubelink. The new namespace will be
listed under Container Workload Profiles and the following scenarios can occur:

Illumio Core for Kubernetes

12

• A Container Workload Profile Template exists for this cluster - The new namespace will
inherit what was defined in the template, as far as Policy state and labels are concerned.

• A Container Workload Profile Template does not exist for this cluster - The new namespace
will remain blank until further edited by an Illumio Core Administrator.

The example below shows a new namespace "namespace1" created in a cluster where a
Container Workload Profile Template exists with a policy state set to "Build" and a partial
label assignment as "Development | Cloud":

NOTE
The namespace is created by the Kubernetes or OpenShift administrator (out-
side the scope of Illumio Core).

For example, to edit the "namespace1" namespace:

1. Click on it and then click Edit.
2. Enter a Name.
3. Assign missing Labels wherever relevant or modify the existing ones.

See Labels Restrictions for Kubernetes Namespaces [14].
4. After you are done, click Save.

The updates are displayed in the Container Workload Profiles list.

Manual Pre-creation of a Profile
To pre-create a profile:

1. In the Container Workload Profiles page, click Add.
2. Enter a Name.
3. Select the desired Management state.
4. Select the Enforcement state.
5. Choose a Visibility state. Note that Enhanced Data Collection is an optional feature that

you must contact Illumio Support to enable.
6. Assign Labels to the profile.

See Labels Restrictions for Kubernetes Namespaces [14].
7. Click Save.

8. Click Copy Key and provide this key to the DevOps team, which will be used as an
annotation in a namespace manifest file to authenticate this resource with the PCE.

You can view the newly-created Container Workload Profile. The status is in "Pending" state
with the hourglass icon displayed next to it.

Illumio Core for Kubernetes

13

To edit the namespace configuration file to include the pairing key in order to authenticate
this namespace with the PCE:

1. Navigate to metadata: > annotations:. If annotations: does not exist, create an
annotations: section under metadata:.

2. Add the com.illumio.pairing_key: Illumio label key field under the annotations: sec-
tion.
• Enter the pairing key obtained during the new Container Workload Profile creation.
• Save the file and exit.

3. Apply the change using kubectl commands.

An example is show below.

apiVersion: v1
kind: Namespace
metadata:
 name: namespace2
 annotations:
 com.illumio.pairing_key:
 abc8aaffdb2101e13a9da02bf492badb8d09d5ce338af116d076aef77558afcd

The updates are displayed in the Container Workload Profiles list.

Set Enforcement
Set an Enforcement Boundary to establish how policy rules affect traffic to and from name-
space workloads. Enforcement boundaries can be one of:

• Visibility Only - Rules are enforced an any traffic
• Selective - Rules are enforced only for selected traffic
• Full - Rules are enforced for all traffic

An enforcement boundary can be applied only to Managed workloads, which means Idle
workloads cannot have an enforcement state applied to them.

You can change Enforcement for multiple profiles of the same current Enforcement level by
selecting the checkboxes for the desired profiles (or by selecting the checkbox in the table
heading row to select all profiles), and then hovering over the Enforcement button, which
then shows a list of new Enforcement states and how many profiles will be changed to that
state. Note that when you change Enforcement to Selective, then Visibility mode must by
Blocked & Allowed, which is automatically done for you.

Labels Restrictions for Kubernetes Namespaces
At a high level, creating policy for containerized applications functions in the same basic
way as for other types of applications running on bare-metal servers and virtual machines
protected by the Illumio Core. Container workloads are assigned multi-dimensional labels to
identify their roles, applications, environments, locations (RAEL), or other custom label types.
These labels can then be used to apply security policies to specific parts of the containerized
application environment. The PCE converts these label-based policies into rules that can be
applied to the container workloads.

Illumio Core for Kubernetes

14

In previous releases, the PCE supported two options for assigning labels to container work-
loads:

• When creating or editing a container workload profile in the PCE web console or by using
the Illumio Core REST API, an Illumio administrator assigned labels for the resources in that
Kubernetes namespace.

• The Illumio administrator did not assign labels in the container workload profile. The De-
vOps/SRE team could use custom annotations in the service and deployment manifest files
(YAML) to apply labels to the pods and services running in a namespace. On receiving this
information from Kubelink, the PCE applied these labels to the container workloads, as long
as the labels matched existing labels in the PCE.

These two ways of assigning labels for container workloads are sufficient for most container
segmentation uses cases; however, this approach lacks the flexibility with label assignment
for namespaces requested by Illumio customers. However, there is an alternative in addition
to those two options that still allows developers/DevOps teams to assign their own labels for
Kubernetes pods and services, but at the same time restricts the list of labels that they can
assign. Illumio administrators now have a way to control which labels can be assigned by the
developers managing their Kubernetes environments.

Options for Assigning Labels with a Container Workload Profile
You assign labels with container workload profiles in a number of ways:

• By creating a new container workload profile; see Manual Pre-creation of a Profile [13].
• By editing a container workload profile that was dynamically created in the PCE when

Kubelink imported a new Kubernetes namespace; see Dynamic Creation of a Profile [12].
• By specifying label assignments in the default settings for the container workload profile

template; see Configure New Container Workload Profiles [12].

Previously, four standard label types were predefined (Role, Application, Environment, and
Location) for setting labels with a container workload profile. Now you can define custom
label types and values in addition to these four predefined labels. You also have the following
options:

• Do not allow a label for a specific label type (the “None” option).
• Allow developers to assign any label from Kubernetes for a specified label type (the “Use

Container Annotations” option); so long as the labels match ones in the PCE.

In previous releases, when the PCE administrator left the labels unassigned in the GUI or
through the REST API, labels specified in annotations were used. Now the “Use Container
Annotations” option is selected by default for all labels in a container workload profile (provi-
ded the default settings for the cluster are not configured).

• Specify a list of labels that are allowed for that label type.
• Fix a label to a specific label for that label type (the “Assign Label” option).

Example: Assigning Labels with a Container Workload Profile
The following example shows how you can use each of the four standard predefined options:

Illumio Core for Kubernetes

15

The Role label annotation (com.illumio.role) is ignored when passed at runtime and reported
by Kubelink to the PCE when "Role" label is set to "None".

Adding, Editing, or Removing Labels
To add one or more labels:

1. Click a profile name, then click Edit.
To apply the same label edits to multiple profiles, click the checkboxes for the desired
profiles (or click the topmost checkbox in the table heading to select all profiles), then
click Edit Labels.

2. Under the Labels heading, add a label type by clicking the field under the Label Type
heading and then choose a label type from the list.

3. Choose a Label Assign Type:
• Use Container Annotations - Use label values for container annotations. See the topic

"Using Annotations" for more information.
• Assign Label - Explicitly set labels from the values configured for this label type.
• No Label Allowed - Prevent this label type from being used in this profile.

4. Specify labels for this label type by clicking the field under Labels Allowed/Label Assign,
and choosing a label from the list.
Any label type defined from annotations or explicit assignments must also have a label
value specified in order to add the label definitions to the profile.

5. Click Save when finished.

To remove label types (and their associated label values):

1. Click the profile name.
2. Click Edit.
3. Under the Labels heading, choose one or more types to delete from this profile by click-

ing the checkboxes in front of the Label Type name.
4. Click Remove.

To remove or change label values:

1. Click the desired profile name.
2. Click Edit.

Illumio Core for Kubernetes

16

3. In the Labels table, remove a label value by clicking the small "x" near the label name
under the Labels Allowed/Label Assign column.
You can replace or add label values by clicking the Select Label or Select Labels field
under Labels Allowed/Label Assign column, and then choosing the new label (or in the
case of Annotations, multiple labels).

4. Click Save.

Possible Labels for the Example

• Developers can specify any label for Applications, so long as the label matches a preexist-
ing label in the PCE.

• For Environment, a list of two labels (env1 and env2) is available. Developers can set either
of these labels in Kubernetes. If a developer sets another value for the Environment label
as a Kubernetes annotation, the PCE considers it invalid and, as a result, a label is not
assigned to that label key. Because the wrong label is assigned, the policy will not allow
expected traffic from other services or applications with the Environment label env1.

• The Location label is fixed as the loc1 label. If a developer assigns another Location label
(for example, loc3, which is a label in the PCE) or the developer leaves the Location label
empty, the PCE overrides what the developer has specified in the annotation and the PCE
assigns loc1 for the Location label.

The label assignments for that namespace appears in the Container Clusters list in the PCE
web console.

For this example, you can see the label assignments mirrored in the Kubernetes annotation
for the namespace:

Illumio Core for Kubernetes

17

Kubernetes Annotation for Namespaces

where developers set role1, app1, env1, and loc100 for the labels in the annotations.

Kubelink passes this data to the PCE at runtime. The PCE ignores the Role label because it's
not allowed in the profile. The PCE accepts the Application and Environment labels. It ignores
the loc100 label and uses loc1 instead.

In the Container Workloads tab, you can see how the label assignments are applied for the
pod in this example.

Illumio Core for Kubernetes

18

NOTE
If a developer sets another value for the Environment label as a Kubernetes
annotation, the PCE considers it invalid and, as a result, a label is not assigned
to that label key. Because the wrong label is assigned, the policy will not allow
expected traffic from other services or applications.

For example, if developers leave the Environment label empty or specify
env100 in the Kubernetes annotations, the following labels are used for the
namespace, and there are no policy for applications or services with the Envi-
ronment label env1.

Effect of Upgrading the PCE to Core 21.1.0 or Later
After upgrading your PCE to Core 21.1.0 or later, the labels assignments for your Kubernetes
namespaces are not impacted operationally. However, you will see changes in the PCE web
console and in the REST API.

• The values set in the PCE in the previous Core release are unchanged and the “Assign
Label” option is selected in the PCE web console and through the REST API.

• The values left open so that container annotations were used for label assignments are
updated to the “Use Container Annotations” option and the label assignments won't be
restricted by any settings in the PCE web console or through the REST API.

Container Workload Profile Restriction

WARNING
There's a 1:1 mapping between the pairing key of a container workload profile
and the Kubernetes namespace that uses this pairing key.

Two namespaces in Kubernetes that use the same pairing key for a given
container profile are not supported or accepted. Such use would cause an
error in the container cluster status.

Illumio Core for Kubernetes

19

Using Annotations

NOTE
Illumio annotations operate differently in CLAS-mode clusters (optionally
available starting in Illumio Core for Kubernetes version 5.0.0) than in previous
legacy (non-CLAS) environments.

The initial portion of this topic describes how to use annotations in legacy
non-CLAS clusters. After this initial portion, in the latter part of this topic, you
can find information about using annotations in CLAS-mode clusters, descri-
bed in the section Using Annotations in CLAS [26].

When assigning labels, you can assign no labels, some labels, or all labels to the namespace.
If there is a label that is not assigned, then you can insert annotations in the Deployment
configuration (or application configuration) to assign labels. If there is a conflict between
a label assigned via the Container Workload Profile and the annotations in the deployment
configuration, the label from the Container Workload Profile overrides the Deployment con-
figuration file. This security mechanism ensures that a malicious actor cannot spoof labels
and get a preferential security policy based on a different scope. Regardless of how you
assign labels, it is not required for Pods or services to have all labels in order for the PCE to
manage them.

To manually annotate the different resources created in a Kubernetes namespace or Open-
Shift project, use the steps described in the sections below.

Deployments

1. Edit the Deployment configuration file:
a. Navigate to spec: > template: > metadata: > annotations:. If annotations:

does not exist, create an annotations: section underneath metadata:.
b. The annotation can support any Illumio label key fields, including user-defined label

types, as well as the standard set of predefined Illumio labels:
• com.illumio.role:

• com.illumio.app:

• com.illumio.env:

• com.illumio.loc:

c. Fill in the appropriate labels.
d. Save the file and exit.

2. Propagate your changes to all Pods.

Services

1. Edit the Deployment configuration file:
a. Navigate to metadata: > annotations:. If annotations: does not exist, create an

annotations: section underneath metadata:.
b. The following Illumio label key fields can be under the annotations: section.

• com.illumio.role:

Illumio Core for Kubernetes

20

• com.illumio.app:

• com.illumio.env:

• com.illumio.loc:

c. Fill in the appropriate labels.
d. Save the file and exit.

2. Propagate your changes to all Pods.

IMPORTANT
When using the annotations method, you should redeploy the Pods or serv-
ices after saving the changes to the configuration files by using the kubectl
apply command.

Annotation Examples
Below are examples of namespaces, Pods, and services that use label assignments using
either Container Workload Profiles or Container Workload Profiles with annotation insertion.

In the example shown below:

• Kubernetes default services or control plane Pods exist within namespaces such as, kube-
system. They will inherit the Application, Environment, and Location labels from what has
been configured in the Container Workload Profile(s). Kubelink is part of the illumio-sys-
tem namespace, and because the Role label is left blank on the illumio-system name-
space, you should assign a Role to Kubelink using annotations in the manifest file.

• A new app1 namespace that contains two different Deployments or a two-tier application
(Web and Database) is deployed. To achieve tier-to-tier segmentation across the applica-
tion they will need different Role labels. Therefore, a Role label should be inserted into the
annotations of each Deployment configuration.

A snippet of the illumio-kubelink Deployment configuration file is shown below, and the
"Kubelink" Role label is inserted under the spec: > template: > metadata: > annota-
tions: section:

illumio-kubelink-kubernetes.yml

spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 annotations:
 com.illumio.role: Kubelink
 labels:
 app: illumio-kubelink
 spec:
nodeSelector:
node-role.kubernetes.io/master: ""

Illumio Core for Kubernetes

21

 serviceAccountName: illumio-kubelink
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule

A snippet of the app1's Web Deployment configuration file is shown below, and the "Web"
Role label is inserted under the spec: > template: > metadata: > annotations: sec-
tion:

shopping-cart-web.yml

spec:
 replicas: 3
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: webapp1
 tier: frontend
 strategy:
 activeDeadlineSeconds: 21600
 resources: {}
 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 600
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 annotations:
 com.illumio.role: Web
 creationTimestamp: null
 labels:

A snippet of the app1's Database Deployment configuration file is shown below and the "Da-
tabase" Role label is inserted under the spec: > template: > metadata: > annotations:
section:

shopping-cart-db.yml

spec:
 replicas: 2
 revisionHistoryLimit: 10
 selector:
 matchLabels:
 app: redis
 role: slave
 tier: backend
 strategy:
 activeDeadlineSeconds: 21600
 recreateParams:
 timeoutSeconds: 600
 resources: {}

Illumio Core for Kubernetes

22

 type: Recreate
 template:
 metadata:
 annotations:
 com.illumio.role: Database
 creationTimestamp: null
 labels:

Below is the final outcome of the label assignment from the example.

In Illumination Map, the application groups will appear differently if you've assigned labels on
resources in the cluster.

DaemonSets and ReplicaSets
The steps described in the above section apply only to services in Kubernetes and Open-
Shift which are bound to Deployment or DeploymentConfig (existing deployments). This is
because Kubelink depends on the Pod hash templates to map resources together, templates
that DaemonSet and ReplicaSet configurations do not have. If you discover Pods derived
from DaemonSet or ReplicaSet configurations and also discover services bound to those
Pods, then Kubelink will not automatically bind the virtual service and service backends
for the PCE. The absence of this binding will create limitations with Illumio policies written
against the virtual service.

To work around this limitation for DaemonSets and ReplicaSets follow the steps below.

1. Generate a random uuid using the uuidgen command (on any Kubernetes or OpenShift
node, or your laptop).

2. Copy the output of the uuidgen command.
3. Edit the DaemonSet or ReplicaSet YAML configuration file.
4. Locate the spec: > template: > metadata: > labels: field in the YAML file and

create the Pod-template-hash: field under the labels: section.
5. Paste the new uuid as the value of the Pod-template-hash: field.
6. Save the changes.

Repeat steps 1 through 6 for each DaemonSet or ReplicaSet configuration.

Illumio Core for Kubernetes

23

The examples below generate a random pod-template-hash value and applies it to a Dae-
monSet configuration.

$ uuidgen
9e6f8753-d8ac-11e8-9999-0050568b6a18

$ cat nginx-ds.yml
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: nginx-webserver
spec:
 template:
 metadata:
 labels:
 app: nginx-webserver
 pod-template-hash: 9e6f8753-d8ac-11e8-9999-0050568b6a18
 spec:
 containers:
 - name: webserver
 image: rstarmer/nginx-curl
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80

Static Pods
Another way of deploying Pods without Deployments or ReplicaSet is by using 'Static Pods'.
In this case, a Pod is spun up by not depending on the API server and is managed by an
individual node's Kubelet. Static Pods are used to spin up control-plane components such as
kube-apiserver, controller-manager, and scheduler. Static Pods are useful if you want a Pod
to be running even if the Kubernetes control-plane components fail. Unlike Naked Pods, if a
Static Pod is not functional, kubelet spins up a new Static Pod automatically by looking at
the manifest file in the /etc/kubernetes/manifests directory.

Services for such Pods can also be created without any selectors. In which case, you need
to manually create the EndPoint resources for such services without a selector. For example,
the default 'kubernetes' service in the default namespace which binds to the API-Server Pod
running on HostNetwork.

If you create Static Pods on an overlay network, you need to create a service without selec-
tors and manually create EndPoint resource to map the Pod to see the Container Workload
and the Virtual Service on the PCE. You will not see any bindings or backends for this Virtual
Service. In order to bind the Static Pods to the Virtual Service, use the 'com.illumio.serv-
ice_uids' annotation in the Static Pods manifest and configure the service without selectors
and manually create the EndPoints. Once the 'com.illumio.service_uids' annotation is
used, you can bind the Container Workloads to its Virtual Service.

Sample code: Place the Static Pod manifest in the /etc/kubernetes/manifests directory

[root@qvc-k8s-027-master01 manifests]# pwd
/etc/kubernetes/manifests

[root@qvc-k8s-027-master01 manifests]# cat network-tool.yml

Illumio Core for Kubernetes

24

apiVersion: v1
kind: Pod
metadata:
 name: nw-tool1
 annotations:
 com.illumio.service_uids: <numerical-value>
spec:
 containers:
 - name: nw-tool1
 image: praqma/network-multitool
 args: [/bin/sh, -c, 'i=0; while true; do echo "$i: $(date)"; i=$
((i+1)); sleep 10; done']
 imagePullPolicy: IfNotPresent
 restartPolicy: Always

[root@qvc-k8s-027-master01 ~]# cat nw-tool-endpoint.yaml
apiVersion: v1
kind: Endpoints
metadata:
 name: nw-tool-svc
 namespace: default
subsets:
- addresses:
 - ip: <ip-value>
 ports:
 - name: http
 port: 80
 protocol: TCP

[root@qvc-k8s-027-master01 ~]# cat nw-tool-svc.yaml
apiVersion: v1
kind: Service
metadata:
 creationTimestamp: "2020-05-18T18:39:19Z"
 labels:
 app: nw-tool
 name: nw-tool-svc
 namespace: default
 resourceVersion: "29308511"
 selfLink: /api/v1/namespaces/default/services/nw-tool-svc
 uid: <numerical-value>
spec:
 clusterIP: <ip-value>
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 80
 sessionAffinity: None
 type: ClusterIP
status:
 loadBalancer: {}
[root@qvc-k8s-027-master01 ~]#

Illumio Core for Kubernetes

25

IMPORTANT
In the above code sample, you need to modify the following two values based
on your configuration:

• uid: <numerical-value>

• clusterIP: <ip-value>

Using Annotations in CLAS
Illumio annotations in CLAS-mode environments are specified on the Kubernetes Workload,
and not on a Pod's template, as is done in legacy non-CLAS environments. This distinction
follows from the concept of the Kubernetes Workload in the PCE UI introduced with CLAS-
mode, which maps directly to the native Kubernetes concept of a workload resource (that is,
Deployments, ReplicaSets, and the like).

Therefore, Kubernetes Workloads on the PCE should be labelled based on the corresponding
workload annotations in Kubernetes, instead of on individual pod template annotations in
Kubernetes.

This labelling distinction prevents confusion, because Pods from a single Deployment can
have different annotations:

kubectl get pod azure-vote-front-6fd8b9b657-6pv8t -n voting-app -o
jsonpath='{.metadata.annotations}' | tr ',' '\n' | grep com.illumio
"com.illumio.app":"A-VotingApp"
"com.illumio.env":"E-Production"
"com.illumio.loc":"Azure"

kubectl get pod azure-vote-front-6fd8b9b657-npppz -n voting-app -o
jsonpath='{.metadata.annotations}' | tr ',' '\n' | grep com.illumio
"com.illumio.app":"A-VotingApp"
"com.illumio.env":"Development"
"com.illumio.loc":"Amazon"
"com.illumio.role":"R-Frontend"}

Migration
Workloads reporting supports both: Pod template annotations and workload annotations.
However, the priority is put on workload, if it contains at least one annotation with a com.il-
lumio. prefix.

In the following example, annotations are specified in metadata.annotations: and
spec.template.metadata.annotations:. Annotations specified in metadata.annota-
tions: are prioritized.

The resulting annotations mapped to labels are: app=A-VotingApp and env=E-Test (no
merging between the sets of annotations occurs).

apiVersion: apps/v1
kind: Deployment

Illumio Core for Kubernetes

26

metadata:
 annotations:
 com.illumio.app: A-VotingApp
 com.illumio.env: E-Test
 name: test-deployment
 labels:
 app: nginx
 spec:
 replicas: 2
 selector:
 matchLabels:
 app: test-pod
 template:
 metadata:
 annotations:
 com.illumio.loc: Amazon
 com.illumio.env: test-env
 labels:
 app: test-pod
 spec:
 containers:
 - name: test-pod
 image: nginx:1.14.2
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80

Deployment with Helm Chart (Core for Kubernetes 3.0.0
and Later)
After you set up your clusters, make sure you do the steps in the order provided in this
section.

NOTE
Illumio Core for Kubernetes 3.0.0 and later is a combined release of C-VEN
and Kubelink. Starting with C-VEN 21.5.17 and Kubelink 3.0, C-VEN and Ku-
belink 3.0 will be only used through the combined release. A Helm Chart
(via quay.io) is used to deploy all necessary product components. If you are
deploying C-VEN 21.5.15 or earlier, instead follow the deployment instructions
in Deployment for C-VEN Versions 21.5.15 or Earlier [45].

The installation process is mostly the same for Kubernetes and OpenShift,
except a few steps differ. A dedicated section is created for Kubernetes or
OpenShift wherever required.

You also have the option to manually deploy components with YAML manifests that are first
generated by Helm, but are not actually deployed with a Helm chart. See Generating YAML
Manifests for Manual Deployment [44] for details.

Illumio Core for Kubernetes

27

Helm Chart Deployment Overview

Starting with the Illumio Core for Kubernetes 3.0.0 release and later, the product (including
C-VEN and Kubelink) is now deployed by using a Helm Chart. The product components and
the Helm Chart are downloaded from a public container repository: https://quay.io/reposito-
ry/illumio/illumio.

Use these steps to deploy Helm Chart:

1. Deploy and configure your PCE. See the PCE Installation and Upgrade Guide.
2. Create a container cluster. See Create a Container Cluster in the PCE [34].
3. Create a pairing profile. See Create a Pairing Profile for Your Cluster Nodes [36].
4. Deploy Helm Chart. See Deploy with Helm Chart [39]. At this stage you can optionally

map existing Kubernetes labels to Illumio labels.

Follow the sections in this order, including the requirements and environment preparations
described next.

Host and Cluster Requirements

To deploy Illumio containers into your environment, you must meet the following require-
ments.

Supported Configurations for On-premises and IaaS
For full details on all supported configurations for Illumio Core for Kubernetes version 3.0.0
and later, see the Kubernetes Operator OS Support and Dependencies page on the Illumio
Support Portal (under Software > OS Support).

Privileges
The Helm Chart deployment process automatically sets all necessary privileges. The privileg-
es listed below must be provided on host-level and cluster-level for the respective compo-
nents. They are listed here for reference.

Host-Level

C-VEN
C-VEN requires the following privileges on the host:

• C-VEN is a privileged container and requires access to the following system calls:
• NET_ADMIN

• SYS_MODULE

• SYS_ADMIN

• C-VEN requires persistent storage on the host to write iptables rules and logs.
• C-VEN mounts volumes on the local host to be able to operate (mount points may differ

depending on the orchestration platform).

Kubelink
Kubelink does not require specific privileges on the host because Kubelink:

Illumio Core for Kubernetes

28

https://quay.io/repository/illumio/illumio
https://quay.io/repository/illumio/illumio
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

• is not a privileged container
• is a stateless container
• does not require persistent storage

Cluster-Level

Namespace
C-VENs and Kubelink are deployed in the illumio-system namespace.

C-VEN
C-VEN requires the following privileges on the cluster:

• C-VEN uses the illumio-ven ServiceAccount.

Kubelink
Kubelink requires the following privileges on the cluster:

• Kubelink creates a new Cluster Role to list and watch events occurring on the Kubernetes
API server for the following elements:
• nodes

• hostsubnets

• replicationcontrollers

• services

• replicasets

• daemonsets

• namespaces

• statefulsets

• Kubelink uses the illumio-kubelink ServiceAccount.

Prepare Your Environment

You need to do these steps before creating clusters or pairing profiles in the PCE, or subse-
quent deployment.

CAUTION
If the prerequisite steps are not done before deployment, then containerized
environments and Kubelink can get disrupted.

Unique Machine ID
Some of the functionality and services provided by the Illumio C-VEN and Kubelink depend
on the Linux machine ID of each Kubernetes cluster node. Each machine ID must be unique
in order to take advantage of the functionality. By default, the Linux operating system gen-
erates a random machine IDto give each Linux host uniqueness. However, there are cases
when machine IDs can be duplicated across machines. This is common across deployments
that clone machines from a golden image, for example, spinning up virtual machines from
VMware templates, creating compute instances from a reference image, or from a template
from a Public Cloud provider.

Illumio Core for Kubernetes

29

IMPORTANT
Illumio Core requires a unique machine ID on all nodes. This issue is more likely
to occur with on-premises or IaaS deployments, rather than with Managed
Kubernetes Services (from Cloud Service Providers). For more information,
see "Troubleshooting".

Create Labels
For details on creating labels, see "Labels and Label Groups" in Security Policy Guide. The
labels shown below are used in examples throughout this document. You are not required to
use the same labels.

Name Label Type

Kubernetes Cluster Application

OpenShift Cluster Application

Production Environment

Development Environment

Data Center Location

Cloud Location

Kubelink Role

Node Role

Control Plane Node (formerly Master) Role

Worker Role

NOTE
Starting in Illumio Core for Kubernetes 4.2.0, you can map Kubernetes labels
to Illumio labels by using a Container Resource Definition in your illumio-
values.yaml with the Helm Chart deployment. See Map Kubernetes Labels to
Illumio Labels [37].

Create a ConfigMap to Store Your Root CA Certificate
This section describes how to implement Kubelink with a PCE using a certificate signed by a
private PKI. It describes how to configure Kubelink and C-VEN to accept the certificate from
the PCE signed by a private root or intermediate Certificate Authority (CA), and ensure that
Kubelink can communicate in a secure way with the PCE.

Illumio Core for Kubernetes

30

Prerequisites

• Access to the root CA to download the root CA certificate
• Access to your Kubernetes cluster and can run kubectl commands
• Correct privileges in your Kubernetes cluster to create resources like ConfigMaps, secrets,

and Pods
• Access to the PCE web console as a Global Organization Owner

Download the Root CA Certificate
Before you begin, ensure that you have access to the root CA certificate. The root CA certifi-
cate is a file that can be exported from the root CA without compromising the security of the
company. It is usually made available to external entities to ensure a proper SSL handshake
between a server and its clients.

You can download the root CA certificate in the CRT format on your local machine. Below is
an example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---
wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format by using
the following command:

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio,
 OU=Technical Marketing, CN=Illumio Demo Root
 CA 1/emailAddress=tme-team@illumio.com
 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio,
 OU=Technical Marketing, CN=Illumio Demo Root
 CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:

Illumio Core for Kubernetes

31

 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:
 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:
 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:
 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92
 X509v3 Authority Key Identifier:
 keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:
 DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:
 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:

Illumio Core for Kubernetes

32

 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:
 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:
 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:
 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a ConfigMap in the Kubernetes Cluster
After downloading the certificate locally on your machine, create a ConfigMap in the Kuber-
netes cluster that will copy the root CA certificate on your local machine into the Kubernetes
cluster.

To create a ConfigMap, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on your
local machine.

To verify that ConfigMap was created correctly, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
> --from-file=./certs/root.democa.illumio-demo.com.crt
configmap/root-ca-config created
$
$ kubectl -n illumio-system get configmap
NAME DATA AGE
root-ca-config 1 12s
$
$ kubectl -n illumio-system describe configmap root-ca-config
Name: root-ca-config
Namespace: illumio-system
Labels: <none>
Annotations: <none>

Data
====
root.democa.illumio-demo.com.crt:

-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---
wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

Illumio Core for Kubernetes

33

Events: <none>
$

root-ca-config is the name used to designate the ConfigMap. You can modify it according
to your naming convention.

Configure Calico in Append Mode
In case your cluster is configured with Calico as the network plugin (usually for Kubernetes
and not for OpenShift), both Calico and Illumio Core will write iptables rules on the cluster
nodes.

• Calico - Needs to write iptables rules to instruct the host how to forward packets (overlay,
IPIP, NAT, and so on).

• Illumio Core - Needs to write iptables rules to secure communications between nodes
and/or Pods.

You should establish a hierarchy to make the firewall coexistence work smoothly because
Illumio Core and Calico will write rules at the same time. By default, both solutions are
configured to insert rules first in the iptables chains/tables and Illumio Core will remove other
rules added by a third-party software (in the Exclusive mode).

To allow Calico to write rules along with Illumio without flushing rules from one another, you
should:

• Configure Illumio to work in Firewall Coexistence mode (default for workloads that are part
of a container cluster).

• Configure Calico to work in Append mode (default is Insert mode).

To configure Calico to work in Append mode with iptables:

1. Edit the Calico DaemonSet:

kubectl -n kube-system edit ds calico-node

2. Locate the spec: > template: > spec: > containers: section inside the YAML file
and change ChainInsertMode by adding the following code block:

- name: FELIX_CHAININSERTMODE
 value: Append

3. Save your changes and exit.
4. Kubernetes will restart all Calico Pods in a rolling update.

For more information on changing Calico ChainInsertMode, see Calico documentation.

Create a Container Cluster in the PCE

To provide visibility and enforcement to your containerized environment, you first need to
create a container cluster in the PCE. Each container cluster maps to an existing Kubernetes
or OpenShift cluster.

Illumio Core for Kubernetes

34

https://docs.projectcalico.org/reference/felix/configuration

Create a Container Cluster
To create a new container cluster:

1. Log into the PCE web console as a user with Global Organization Owner privileges.
2. From the PCE web console menu, navigate to Infrastructure > Container Clusters.
3. Click Add.

a. Add a Name.
b. Save the Container Cluster.

4. You will see a summary page of the new Container Cluster. From the Cluster Pairing Token
section, copy the values of the Cluster ID and Cluster Token.

5. After copying and saving the values (in a text editor or similar tool), open the Container
Workload Profiles page.

Configure a Container Workload Profile Template
When configuring a new Container Cluster, it is recommended to set the default settings
shared by all the Container Workload Profiles. Illumio provides a Container Workload Profile
template that can be used for that purpose. By defining the default Policy State and mini-
mum set of labels common to all namespaces in the cluster, you will save time later on when
new namespaces are discovered by Kubelink. Each new profile created will inherit what was
defined in the template.

IMPORTANT
Illumio does not provide a method to redefine at once all the labels associated
with each profile. Hence, it is strongly recommended to use the provided
template to define the default values for all profiles that are part of the same
cluster.

Illumio Core for Kubernetes

35

To define the default parameters for all profiles using a template, under Container Workload
Profiles, click Edit default settings and select values for all the fields.

After you click OK, the following information is displayed:

Create a Pairing Profile for Your Cluster Nodes

IMPORTANT
Before deploying the C-VEN, ensure that either of the following two require-
ments has been met:

• Kubelink is deployed on the Kubernetes cluster and is in sync with the PCE,
or

• Firewall coexistence is enabled.

Before deploying, you should create a pairing profile to pair the cluster nodes with the PCE.
You only need to create one pairing profile for all your nodes.

NOTE
You only need to create pairing profiles for Kubernetes or OpenShift nodes
and not for container workloads.

For ease of configuration and management, consider applying the same Application, Envi-
ronment, and Location labels across all nodes of the same Kubernetes or OpenShift cluster.
The screenshot below shows an example of a pairing profile for a Kubernetes cluster.

Illumio Core for Kubernetes

36

TIP
Illumio recommends all pairing profiles for Kubernetes nodes to not use Full
Enforcement policy state. Use Idle or Visibility Only mode for initial configura-
tion.

You should only move them into Full enforcement state after you have com-
pleted all other configuration steps in this guide.

Map Kubernetes Node or Workload Labels to Illumio Labels

Label mapping is a method of mapping some or all existing Kubernetes labels to Illumio
labels. Label maps are an additional way to assign Illumio labels to container host or Kuber-
netes workloads in addition to existing methods, such as with container workload profiles
and pairing profiles. Labels assigned through label maps take precedence -- that is, they
overwrite any labels assigned with these other methods.

A label map is defined by a Kubernetes Custom Resource Definition (CRD) within a YAML file
that is typically installed via a Helm Chart. Installing the Helm Chart then applies the defined
labels.

The label type must be created and exist in PCE first before new labels can be created
through label mapping.

Kubernetes Node Labels or Kubernetes Workload Labels
You can map labels on Kubernetes nodes (also called host workloads) to Illumio labels, or
map labels on Kubernetes Workloads to Illumio labels. Define labels for Kubernetes nodes in
a nodeLabelMap section of your CRD, and labels for Kubernetes Workloads in a workloadLa-
belMap section.

NOTE
Note that Kubernetes Workloads is a term used only in CLAS-enabled deploy-
ments of Illumio Core for Kubernetes (contrasted to Container Workloads).
There is currently no support for label mapping non-CLAS Container Work-
loads.

IMPORTANT
You can map Kubernetes Workload labels only to deployments running PCE
version 24.5.0 or later.

Illumio Core for Kubernetes

37

Label Mapping CRD
The CRD is defined in the YAML file with a kind: LabelMap declaration, which in turn con-
tains a nodeLabelMap section that applies to nodes (host workloads) or a workloadLabel-
Map section that applies to Kubernetes Workloads. The declaration can contain both sections.

Within the nodeLabelMap or workloadLabelMap section, Illumio label types are mapped with
fromKey and toKey key-value pairs, where the fromKey value specifies a source Kubernetes
label, and the toKey value paired with it defines the destination Illumio label type.

If an optional allowCreate: true is within a fromKey and toKey pair, the Illumio label value
defined in that mapping is created if it does not already exist on the PCE.

An optional valuesMap: within a fromKey and toKey pair specifies one or more label value
mappings for that label type, with from: value identifying the source Kubernetes label and
the to: value following it specifying the destination Illumio label value. If no valuesMap: is
specified, then label values for the mapped label type are not changed. Only the label type is
changed in the PCE.

Example Label Maps
The following example label map for Kubernetes node labels performs these mapping func-
tions:

• The nodeLabelMap item creates a new Illumio loc label of Amazon (if it does not exist, per
the allowCreate: true declaration), and maps this label to all nodes with the Kubernetes
label topology.kubernetes.io/region with either value of eu-west-1 or eu-west-2.

• With the second item under nodeLabelMap, for every node-type Kubernetes label, the
map creates Illumio k8s-node labels with values based on the existing Kubernetes label
values (because there is no associated valuesMap mapping definition).

kind: LabelMap
apiVersion: ic4k.illumio.com/v1alpha1
metadata:
 name: default
nodeLabelMap:
 - allowCreate: true
 fromKey: topology.kubernetes.io/region
 toKey: loc
 valuesMap:
 - from: eu-west-1
 to: Amazon
 - from: eu-west-2
 to: Amazon
 - allowCreate: true
 fromKey: node-type
 toKey: k8s-node

The following is a similar YAML file code excerpt that defines a label map for a Kubernetes
Workload.

• In the first declaration under workloadLabelMap, for every environ Kubernetes label, the
map creates an Illumio env label type, and maps EKS values to AmazonK8SService label
values for this type.

Illumio Core for Kubernetes

38

• The next fromKey section maps workloads with the Kubernetes label stage to the Illumio
label type role.

kind: LabelMap
apiVersion: ic4k.illumio.com/v1alpha1
metadata:
 name: default

workloadLabelMap:
- fromKey: environ
 toKey: env
 allowCreate: false
 valuesMap:
 - from: EKS
 to: AmazonK8SService

- fromKey: stage
 toKey: role
 allowCreate: true

Show the Source of a PCE Label
Because a Kubernetes Workload can have its label assigned to it in any of three different
ways (Container Workload Profile, Kubernetes annotations, or the label map CRD), the PCE
now shows how a Kubernetes workload was labeled, that is, what is the source of the PCE
label. The label source is indicated by an annotation that begins with the string com.ilo-re-
sult.<label_type> which is paired with a label source indicator.

The label source indicator can be one of these values:

• container-workload-profile - Container Workload Profile
• annotations - Kubernetes workload template annotation
• label-map - LabelMap CRD

This is shown at both the PCE web UI (in the workload details page in the Kubernetes
Attributes section) and also in the command line output produced by the kubectl get
deploy command.

Deploy with Helm Chart

To deploy via Helm Chart:

1. Install Helm. See https://helm.sh/docs/ for a quick start guide and other relevant informa-
tion.
According to official Helm documentation, if your version of Helm is lower than 3.8.0, the
following command must be executed in the installation environment:

$ export HELM_EXPERIMENTAL_OCI=1

2. Prepare an illumio-values.yaml file with the following mandatory parameters set with
values that describe this deployment:

pce_url: URL_PORT # PCE URL with port, e.g. mypce.example.com:8443
cluster_id: ILO_CLUSTER_UUID # Cluster ID from PCE, e.g. cc4997c1-40...
cluster_token: ILO_CLUSTER_TOKEN # Cluster Token from PCE, e.g.

Illumio Core for Kubernetes

39

https://helm.sh/docs/

1_170b...
cluster_code: ILO_CODE # Pairing Profile key from PCE, e.g. 1391c...
containerRuntime: containerd # Container runtime engine used in cluster,
allowed values are [containerd, crio, k3s_containerd]
containerManager: kubernetes # Container manager used in cluster,
allowed values are [kubernetes, openshift]

where URL_PORT, ILO_CLUSTER_UUID, ILO_CLUSTER_TOKEN, and ILO_CODE are placehold-
ers for customer provided variables.
If you are using a private PKI, you need to add these additional lines to your illu-
mio_values.yaml:

extraVolumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/
 readOnly: false
extraVolumes:
 - name: root-ca
 configMap:
 name: root-ca-config
ignore_cert: true

You may also want to include selected optional parameters when installing, for example,
with clusterMode: clas to deploy with a CLAS-enhanced Kubelink component. For
more information, see Important Optional Parameters.

NOTE
If you want to deploy with CLAS enabled, you must explicitly set the
clusterMode Helm Chart parameter. The default is to deploy in legacy
(non-CLAS) mode.

3. Optionally map existing Kubernetes labels to desired Illumio labels by adding a Kuber-
netes Custom Resource Definition (CRD) label map to your illumio-values.yaml file.

4. Install the Helm Chart:

helm install illumio -f illumio-values.yaml oci://quay.io/illumio/
illumio --version <ver#> --namespace illumio-system --create-namespace

IMPORTANT
Be sure to specify the version to install with the --version <ver#> option
(for example, --version 5.1.0), after confirming that the Illumio Kuber-
netes Operator version you want to install is supported with your PCE
version.

Verify which PCE versions support the Illumio Core for the Kubernetes
version you want to deploy on the Kubernetes Operator OS Support and
Dependencies page on the Illumio Support Portal.

In case the illumio-system namespace already exists, omit the --create-namespace
flag.
Optionally, you can deploy into a custom namespace of your choice instead of the default
namespace of illumio-system, The default namespace is overridden for backward com-
patibility by using the variable namespaceOverride: illumio-system.

Illumio Core for Kubernetes

40

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

For example, to install into the ilo namespace, specify the namespace with the --name-
space option and the --set option specifying namespaceOverride to null:

helm install illumio -f illumio-values.yaml oci://quay.io/illumio/
illumio --version 5.3.0 --namespace ilo --create-namespace --set
namespaceOverride=null

Alternatively, specify the namespace with the --namespace option but also use --set to
explicitly set namespaceOverride to ilo:

helm install illumio -f illumio-values.yaml oci://quay.io/illumio/
illumio --version 5.3.0 --namespace ilo --create-namespace --set
namespaceOverride=ilo

NOTE
Kubelink version labeling has changed. Prior to version 3.3.0, Kubelink used a
6-hexit suffix for its release version, like 3.2.1.445a83. In Kubelink 3.3.0 and lat-
er, the version suffix is now changed to a numeric build number, like 3.3.0-56.

Important Optional Parameters
Refer to the README file included with the Helm Chart for important deployment information,
including additional parameters you can specify in the Helm Chart before installing it.

The following list describes a few important optional parameters to consider using in your
illumio-values.yaml file.

Flat Networks: networkType
To add support for flat network CNIs in addition to the default (where pods run on an overlay
network), an optional networkType parameter is now available in the Helm Chart where you
can specify flat or overlay type. The default value is overlay.

CLAS Mode: clusterMode
Starting in Illumio Core for Kubernetes versions 5.0.0 and later, a Cluster Local Actor Store
(CLAS) mode is introduced into the Kubelink architecture. Use the optional clusterMode
parameter to configure Kubelink when first installing a new cluster, or when migrating an
existing cluster.

When installing, set clusterMode to clas or legacy in your illumio-values.yaml file to
turn on (or leave off) CLAS mode in the cluster, respectively. The default setting for cluster-
Mode is legacy (non-CLAS). To enable CLAS in a new cluster, you must explicitly include
clusterMode:clas in the illumio-values.yaml file when installing.

When upgrading an existing non-CLAS cluster to CLAS, set clusterMode to migrateLega-
cyToClas. When reverting (or downgrading) CLAS to non-CLAS, set clusterMode to migra-
teClasToLegacy.

Illumio Core for Kubernetes

41

IMPORTANT
To upgrade to CLAS, follow the procedure described in Upgrade to CLAS
Architecture.

Illumio recommends enabling (or migrating to) CLAS-enabled clusters to take advantage of
this architecture's benefits. For more information about CLAS, see the Cluster Local Actor
Store (CLAS) section.

CLAS Degraded Mode: disableDegradedMode and degradedModePolicyFail
If the connection between Kubelink and the PCE becomes unavailable, a CLAS-enabled
Kubelink can still serve policies to C-VEN (and therefore to its Kubernetes Workloads and
pods). When a PCE interruption is detected, a CLAS-enabled Kubelink enters a degraded
mode.

By default, degraded mode is enabled in CLAS clusters. You can disable degraded mode by
explicitly setting the parameter/value pair disableDegradedMode: true in illumio-val-
ues.yaml, and performing a helm upgrade.

In degraded mode, new Pods of existing Kubernetes Workloads get the latest policy version
cached in CLAS storage. When Kubelink detects a new Kubernetes Workload labeled the
same way and in the same namespace as an existing Kubernetes Workload, Kubelink delivers
the existing, cached policy to Pods of this new Workload.

If Kubelink cannot find a cached policy (that is, when labels of a new Workload do not match
the labels of any existing Workload in the same namespace), Kubelink delivers a "fail open" or
"fail closed" policy based on the Helm Chart parameter degradedModePolicyFail setting, as
specified in the illumio-values.yaml file when installing (or upgrading).

The default parameter value of degradedModePolicyFail is open, which opens the firewall
of new Pods. The closed value means the firewall of new Pods is programmed to block all
network connectivity.

The precise behavior of closed depends on the Cluster Workload Profile's Enforcement
setting: all connectivity is blocked only if the Enforcement of the namespace is set to Full.

By default, degraded mode is enabled in CLAS clusters. You can disable degraded mode by
explicitly setting the parameter/value pair disableDegradedMode: true in illumio-val-
ues.yaml, and performing a helm upgrade.

When degraded mode is disabled, Kubelink/CLAS does not deliver policy based on matching
labels. Kubelink continues to run, and delivers the cached policy to existing Kubernetes
Workloads, but does not deliver policy to new Workloads. Kubelink continues to attempt
re-establishing communication with the PCE.

After the PCE becomes available again, it restarts, synchronizes policy and labels, and then
continues normal operation.

Illumio Core for Kubernetes

42

NOTE
If the PCE becomes inaccessible due to database restoration or maintenance,
and Kubelink has disabled degraded mode, you are advised to restart Kube-
link by deleting its Pod to synchronize the current state.

CLAS etcd Internal Storage Size: sizeGi
Kubelink in CLAS mode uses etcd as a local cache for policy and runtime data. The Helm
Chart parameter storage.sizeGi sets the size in GB of this ephemeral storage. Set the pa-
rameter under storage in the illumio-values.yaml for a cluster, as shown in the following
example:

storage:
 registry: "docker.io/bitnami"
 repo: "etcd"
 imageTag: "3.5.7"
 imagePullPolicy: "IfNotPresent"
 sizeGi: 1

The default value is 1, for 1 GB, which should be enough for a cluster with under 1000
Kubernetes workloads. If a cluster is bigger and you increase memory limits for C-VEN and
Kubelink, then increase the etcd internal storage size with this parameter.

Re-Label Your Cluster Nodes

NOTE
Re-labeling the cluster nodes is optional.

In the case of self-managed deployments in which both Master and Worker nodes are man-
aged, you may want to re-label your nodes to differentiate Master nodes from Worker nodes.
Doing this helps when you are writing different policies for the Worker and Master nodes, or
if you want to segment these nodes differently.

To re-label your cluster nodes:

1. In the PCE UI, go to Infrastructure > Container Clusters > YourClusterName > Work-
loads.

2. Select the workloads you want to re-label.
3. Click Edit Labels to assign the new labels (for example, Master and Worker).

Illumio Core for Kubernetes

43

4. After re-labeling your cluster nodes, the nodes part of the cluster reflect the updated
label(s).

Generating YAML Manifests for Manual Deployment

In addition to the typical deployment with a Helm Chart, alternatively you can manually
deploy Illumio Core for Kubernetes and OpenShift using customized YAML manifests that
you have changed to suit your specific needs.

The procedure consists of the following steps, which are described in the following sections:

1. Install Helm tool.
2. Generate files.
3. Remove unpair DaemonSet and Job commands.

Install Helm Tool
There are several options for installing the Helm tool, depending on the operating system you
are running. For complete details on all options, see https://helm.sh/docs/intro/install/. A few
common installation commands are shown below:

brew install helm

sudo snap install helm --classic

export HELM_LATEST=$(curl -s https://api.github.com/repos/helm/helm/
releases/latest | grep tag_name | cut -d '"' -f 4)
curl -LJO https://get.helm.sh/helm-$HELM_LATEST-linux-amd64.tar.gz
tar -zxvf helm-$HELM_LATEST-linux-amd64.tar.gz
mv linux-amd64/helm /usr/local/bin/helm

Generate Files
Prepare values.yaml in advance. The file must set at least the following minimally required
parameters:

pce_url: URL_PORT
cluster_id: ILO_CLUSTER_UUID
cluster_token: ILO_CLUSTER_TOKEN
cluster_code: ILO_CODE
containerRuntime: RUNTIME # supported values: [containerd (default),
docker, crio, k3s_containerd]
containerManager: MANAGER # supported values: [kubernetes, openshift]
networkType: flat # CNI type, allowed values are [overlay, flat]
clusterMode: clas #

Generate templates and redirect output into a file, for example, into illumio.yaml:

helm template oci://quay.io/illumio/illumio -f values.yaml --version <ver#>
> illumio.yaml

Illumio Core for Kubernetes

44

https://helm.sh/docs/intro/install/

IMPORTANT
Be sure to explicitly specify the version you want to install with the --version
<ver#> option (for example, --version 5.1.0), after confirming that the
product version you want to install is supported with your PCE version. Verify
which PCE versions support the Illumio Core for Kubernetes version you want
to deploy at the Kubernetes Operator OS Support and Dependencies page on
the Illumio Support Portal.

Remove Unpair DaemonSet and Job Objects
In the generated YAML file illumio.yaml, search for and remove the DaemonSet and Job
objects. Remove only these two objects; they are only used for the removal of Illumio prod-
uct:

. . .
kind: Job
metadata:
name: illumio-ven-unpair-job
...
kind: DaemonSet
metadata:
name: illumio-ven
...

Note that the DaemonSet name changed in Illumio Core for Kubernetes version 5.2.0 from
illumio-ven-unpair to illumio-ven.

Deployment for C-VEN Versions 21.5.15 or Earlier

After you set up your clusters, make sure you perform the steps in the order provided in this
section.

NOTE
Follow these instructions if you are deploying Illumio Core for Kubernetes
(C-VEN) versions 21.5.15 or earlier.

If you are deploying the Illumio Core for Kubernetes 3.0.0 release (or later), do
not follow these instructions, but instead refer to Deployment with Helm Chart
(Core for Kubernetes 3.0.0 and Higher) [27], which describes how to use a
Helm Chart to deploy all necessary product components.

The installation process is mostly the same for Kubernetes and OpenShift,
except a few steps differ. A dedicated section is created for Kubernetes or
OpenShift wherever required.

Illumio Core for Kubernetes

45

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Host and Cluster Requirements

To deploy Illumio containers into your environment, you must meet the following require-
ments.

Supported Configurations for On-premises and IaaS
For full details on all supported configurations for Containerized VEN release 21.5.15 and
earlier, see the C-VEN/Kubelink OS Support and Dependencies page on the Illumio Support
Portal (under Software > OS Support).

Privileges
The privileges listed below should be provided on host-level and cluster-level for the respec-
tive components.

Host-Level

C-VEN
C-VEN requires the following privileges on the host:

• C-VEN is a privileged container and requires access to the following system calls:
• NET_ADMIN

• SYS_MODULE

• SYS_ADMIN

• C-VEN requires persistent storage on the host to write iptables rules and logs.
• C-VEN mounts volumes on the local host to be able to operate (mount points may differ

depending on the orchestration platform).

Optionally, you can set the Priority Class to system-node-critical. This option is only
supported in Kubernetes 1.17 and later, in a namespace other than kube-system. For more
details, see the Kubernetes documentation.

Kubelink
Kubelink does not require specific privileges on the host because Kubelink:

• Is not a privileged container.
• Is a stateless container.
• Does not require persistent storage.

Cluster-Level

Namespace
C-VENs and Kubelink are deployed in the illumio-system namespace. You can modify this
namespace name according to your deployment (manifest file modification).

C-VEN
C-VEN requires the following privileges on the cluster:

• C-VEN uses the illumio-ven ServiceAccount.

Illumio Core for Kubernetes

46

https://support.illumio.com/shared/software/os-support-package-dependencies/cven_kubelink.html

Kubelink
Kubelink requires the following privileges on the cluster:

• Kubelink creates a new Cluster Role to list and watch events occurring on the Kubernetes
API server for the following elements:
• nodes

• hostsubnets

• replicationcontrollers

• services

• replicasets

• daemonsets

• namespaces

• statefulsets

• Kubelink uses the illumio-kubelink ServiceAccount.

Optionally, you can set the Priority Class to system-cluster-critical. This option is only
supported in Kubernetes 1.17 and later, in a namespace other than kube-system. For more
details, see the Kubernetes documentation.

Prepare Your Environment

IMPORTANT
The following steps for preparing your environment are no longer needed
when deploying Illumio Core for Kubernetes version 3.0.0 and beyond, which
now uses Helm Chart for deploying C-VEN and Kubelink. This section is in-
cluded here for backwards compatibility and historical purposes. If you are
deploying using Helm Chart, skip this section and now follow the instructions
in Create a Container Cluster in the PCE [55].

You need to do these steps before C-VEN installation and pairing.

CAUTION
If the prerequisite steps are not done before C-VEN and Kubelink installation,
then containerized environments and Kubelink can get disrupted.

Unique Machine ID
Some of the functionality and services provided by the Illumio C-VEN and Kubelink depend
on the Linux machine-id of each Kubernetes cluster node. Each machine-id must be unique
in order to take advantage of the functionality. By default, the Linux operating system gen-
erates a random machine-id to give each Linux host uniqueness. However, there are cases
when machine-id's can be duplicated across machines. This is common across deployments
that clone machines from a golden image, for example, spinning up virtual machines from

Illumio Core for Kubernetes

47

VMware templates, creating compute instances from a reference image, or from a template
from a Public Cloud provider.

IMPORTANT
Illumio Core requires a unique machine-id on all nodes. This issue is more likely
to occur with on-premises or IaaS deployments, rather than with Managed
Kubernetes Services (from Cloud Service Providers). For more information on
how to create a new unique machine-id, see Troubleshooting [113].

Create Labels
For details on creating labels, see "Labels and Label Groups" in Security Policy Guide. The
labels shown below are used in examples throughout this document. You are not required to
use the same labels

Name Label Type

Kubernetes Cluster Application

OpenShift Cluster Application

Production Environment

Development Environment

Data Center Location

Cloud Location

Kubelink Role

Node Role

Control Plane Node (formerly Master) Role

Worker Role

Push Kubelink and C-VEN Images to Your Container Registry
In order to install Illumio Core for containers, you first need to upload (or push) Kubelink
and C-VEN container images to your container registry. The files in the C-VEN and Kubelink
packages you've downloaded are as follows:

C-VEN illumio-ven-xx.x.x-xxxx.k8s.x86_64.tgz package includes:

• A Docker image
• illumio-ven-xx.x.x-xxxx.tgz

• Configuration files:
• illumio-ven-secret.yml

• illumio-ven-kubernetes.yml

Illumio Core for Kubernetes

48

• illumio-ven-openshift.yml

Kubelink illumio-kubelink-x.x.x.tar.gz package includes:

• A docker image
• kubelink-image.tar.gz

• Configuration files in kube-yaml
• illumio-kubelink-secret.yml

• illumio-kubelink-kubernetes.yml

• illumio-kubelink-openshift.yml

• illumio-kubelink-namespace.yml

CAUTION
These images are not publicly available and should not be posted on a public-
ly open container registry without Illumio's consent.

In a self-managed deployment, Kubelink and C-VEN images can be pushed to a private
container registry. In OpenShift, a container registry is provided as part of the platform, and
images can be pushed to this registry for simplicity and better authentication. In the case of
Kubernetes, there is no container registry provided by default and must be provided as an
external component.

In a cloud-managed deployment, Cloud Service Providers (CSPs) provide integration of pri-
vate container registries such as, Amazon ECR, Microsoft ACR, and so on. These registries
can securely be used to host Illumio's container images for Kubelink and C-VEN. Refer to
the documentation provided by the respective CSPs to learn how to push images to those
registries.

To push Kubelink and C-VEN container images to your private container registry, use the
following commands (based on docker):

1. Log in to your private container registry.

docker login <docker-registry>

2. Load Kubelink and C-VEN container images on your local computer.

docker load -i kubelink-image.tar.gz
docker load -i illumio-ven-21.5.x-xxxx.tgz

Verify that docker images are loaded on your computer.

docker image ls

3. Tag the Kubelink and C-VEN container image IDs with the name of your container registry.

docker tag <illumio-kubelink-image-id> <docker-registry>/
illumio-kubelink:2.1.x.xxxxxx
docker tag <illumio-ven-image-id> <docker-registry>/illumio-ven:21.5.x-
xxxx

Illumio Core for Kubernetes

49

Verify that images are tagged on your computer and ready to be pushed to your private
container registry.

docker image ls

4. Push Kubelink and C-VEN container images on your private container registry.

docker push <docker-registry>/illumio-kubelink:2.1.x.xxxxxx
docker push <docker-registry>/illumio-ven:21.5.

x-xxxx

After pushing images to your private container registry, proceed to the next section.

Create Illumio Namespace
Illumio Core for containers is deployed in a dedicated namespace illumio-system, by default.
This namespace has the minimum privileges in the cluster required to run Illumio Core and
can tie into the Kubernetes and OpenShift RBAC models.

To create the illumio-system namespace for Kubernetes, use the following command:

kubectl create namespace illumio-system

NOTE
Illumio provides a yaml manifest file to create the namespace in the Kubelink
tarball illumio-kubelink-namespace.yml. You can create this namespace
by applying this manifest file to your Kubernetes cluster, using the following
command:

kubectl apply -f illumio-kubelink-namespace.yml

To create the illumio-system project for OpenShift, use the following command:

oc new-project illumio-system

Authenticate Kubernetes Cluster with Container Registry

NOTE
Depending on your deployment, the steps in the Authenticate Kubernetes
Cluster with Container Registry [50], Create a ConfigMap to Store Your Root
CA Certificate [51], and Configure Calico in Append Mode [54] topics are
optional.

When storing container images in a private container registry, it is often required and strong-
ly recommended to authenticate against the registry to be able to pull an image from it. In

Illumio Core for Kubernetes

50

order to do this, the Kubernetes or OpenShift cluster must have the credentials configured
and stored in a secret file to be able to pull container images.

To configure a secret to store your container registry credentials, use the following command:

kubectl create secret docker-registry <container-registry-secret-name>
-n illumio-system --docker-server=<container-registry>
--docker-username=<username> --docker-password=<password>

To verify that the secret has been created, use the following command:

kubectl get secret -n illumio-system |
grep <container-registry-secret-name>

IMPORTANT
The above commands are valid for deployments with your own private con-
tainer registry, but may not be valid for a cloud-managed private container
registry. For more information, refer to your Cloud Service Provider documen-
tation.

Create a ConfigMap to Store Your Root CA Certificate
This section describes how to implement Kubelink with a PCE using a certificate signed by a
private PKI. It describes how to configure Kubelink and C-VEN to accept the certificate from
the PCE signed by a private root or intermediate Certificate Authority (CA) and ensure that
Kubelink can communicate in a secure way with the PCE.

Prerequisites

• Access to the root CA to download the root CA certificate.
• Access to your Kubernetes cluster and can run kubectl commands.
• Correct privileges in your Kubernetes cluster to create resources like a configmaps, secrets,

and Pods.
• Access to the PCE web console as a Global Organization Owner.

Download the Root CA Certificate
Before you begin, ensure that you have access to the root CA certificate. The root CA certifi-
cate is a file that can be exported from the root CA without compromising the security of the
company. It is usually made available to external entities to ensure a proper SSL handshake
between a server and its clients.

You can download the root CA cert in the CRT format on your local machine. Below is an
example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---

Illumio Core for Kubernetes

51

wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format by using
the following command:

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio,
 OU=Technical Marketing, CN=Illumio Demo Root
 CA 1/emailAddress=tme-team@illumio.com
 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio,
 OU=Technical Marketing, CN=Illumio Demo Root
 CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:
 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:
 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:
 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:

Illumio Core for Kubernetes

52

 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:
 DE:15:92
 X509v3 Authority Key Identifier:
 keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:
 C7:DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:
 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:
 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:
 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:
 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:
 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a configmap in Kubernetes Cluster
After downloading the certificate locally on your machine, create a configmap in the Kuber-
netes cluster that will copy the root CA certificate on your local machine into the Kubernetes
cluster.

Illumio Core for Kubernetes

53

IMPORTANT
When running the command to create a configmap, the C-VEN and Kubelink
require the file to have the .crt extension not work.

To create configmap, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on your
local machine.

To verify that configmap was created correctly, use the following command:

$ kubectl -n illumio-system create configmap root-ca-config \
> --from-file=./certs/root.democa.illumio-demo.com.crt
configmap/root-ca-config created
$
$ kubectl -n illumio-system get configmap
NAME DATA AGE
root-ca-config 1 12s
$
$ kubectl -n illumio-system describe configmap root-ca-config
Name: root-ca-config
Namespace: illumio-system
Labels: <none>
Annotations: <none>

Data
====
root.democa.illumio-demo.com.crt:

-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---
wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

Events: <none>
$

root-ca-config is the name used to designate configmap. You can modify it according to
your naming convention.

Configure Calico in Append Mode
In case your cluster is configured with Calico as the network plugin (usually for Kubernetes
and not for OpenShift), both Calico and Illumio Core will write iptables rules on the cluster
nodes.

Illumio Core for Kubernetes

54

• Calico - Needs to write iptables rules to instruct the host how to forward packets (overlay,
IPIP, NAT, and so on).

• Illumio Core - Needs to write iptables rules to secure communications between nodes
and/or Pods.

You should establish a hierarchy to make the firewall coexistence work smoothly because
Illumio Core and Calico will write rules at the same time. By default, both solutions are
configured to insert rules first in the iptables chains/tables and Illumio Core will remove other
rules added by a third-party software (in the Exclusive mode).

To allow Calico to write rules along with Illumio without flushing rules from one another, you
should:

• Configure Illumio to work in Firewall Coexistence mode (default for workloads that are part
of a container cluster).

• Configure Calico to work in Append mode (default is Insert mode).

To configure Calico to work in Append mode with iptables:

1. Edit the calico DaemonSet.

kubectl -n kube-system edit ds calico-node

2. Locate the spec: > template: > spec: > containers: section inside the YAML file
and change ChainInsertMode by adding the following code block:

- name: FELIX_CHAININSERTMODE
 value: Append

3. Save your changes and exit.
4. Kubernetes will restart all Calico Pods in a rolling update.

For more information on changing Calico ChainInsertMode, see Calico documentation.

Create a Container Cluster in the PCE

To provide visibility and enforcement to your containerized environment, you first need to
create a container cluster in the PCE. Each container cluster maps to an existing Kubernetes
or OpenShift cluster.

Create a Container Cluster
To create a new container cluster:

1. Log into the PCE web console as a user with Global Organization Owner privileges.
2. From the PCE web console menu, navigate to Infrastructure > Container Clusters.
3. Click Add.

a. Add a Name.
b. Save the Container Cluster.

4. You will see a summary page of the new Container Cluster. From the Cluster Pairing Token
section, copy the values of the Cluster ID and Cluster Token.

5. After copying and saving the values (in a text editor or similar tool), open the Container
Workload Profiles page.

Illumio Core for Kubernetes

55

https://docs.projectcalico.org/reference/felix/configuration

Configure a Container Workload Profile Template
When configuring a new Container Cluster, it is recommended to set the default settings
shared by all the Container Workload Profiles. Illumio provides a Container Workload Profile
template that can be used for that purpose. By defining the default Policy State and mini-
mum set of labels common to all namespaces in the cluster, you will save time later on when
new namespaces are discovered by Kubelink. Each new profile created will inherit what was
defined in the template.

IMPORTANT
Illumio does not provide a method to redefine at once all the labels associated
with each profile. Hence, it is strongly recommended to use the provided
template to define the default values for all profiles that are part of the same
cluster.

To define the default parameters for all profiles using a template, under Container Workload
Profiles, click Edit default settings and select values for all the fields.

For information about assigning default labels in the template, see the "Labels Restrictions
for Kubernetes Namespaces" topic.

After you click OK, the following information is displayed:

Illumio Core for Kubernetes

56

Deploy C-VENs in Your Cluster

IMPORTANT
Before deploying the C-VEN, ensure that either of the following two require-
ments has been met:

• Kubelink is deployed on the Kubernetes cluster and is in sync with the PCE,
or

• Firewall coexistence is enabled.

Prerequisites

• VEN deployment file provided by Illumio.
• VEN secret file provided by Illumio.
• Illumio's C-VEN docker image uploaded to a private container registry.
• In OpenShift, create the 'illumio-ven' service account in the 'illumio-system' project and add

this account to the privileged Security Context Constraint (SCC):
• oc create sa illumio-ven

• oc adm policy add-scc-to-user privileged -z illumio-ven -n illumio-system

Create a Pairing Profile for Your Cluster Nodes
Before deploying the C-VEN in your cluster, you should create a pairing profile to pair the
cluster nodes with the PCE. You only need to create one pairing profile for all your nodes.

NOTE
You only need to create pairing profiles for Kubernetes or OpenShift nodes
and not for container workloads.

For ease of configuration and management, consider applying the same Application, Envi-
ronment, and Location labels across all nodes of the same Kubernetes or OpenShift cluster.
The screenshot below shows an example of a pairing profile for a Kubernetes cluster.

Illumio Core for Kubernetes

57

TIP
Illumio recommends all pairing profiles for Kubernetes nodes not to use the
Full enforcement policy state. Use Visibility Only mode for initial configuration.

You should only move them into Full enforcement state after you have com-
pleted all other configuration steps in this guide, such as setting up Kubelink,
discovering services, and writing rules.

Configure C-VEN Secret
This section assumes that you have already created a Pairing Profile in the PCE. You will need
the activation code for the C-VEN secret.

1. To retrieve the activation code from the pairing profile, go to Policy Objects > Pairing
Profiles, open the pairing profile created for your cluster nodes, and click Generate Key.

2. After copying and saving the Key (in a text editor or similar tool), you can exit the page.
3. Open the C-VEN secret YAML file and modify the following keys (under stringData):

• ilo_server = PCE URL and port. Example: mypce.example.com:8443
• ilo_code = Activation code value from Step 1. Example:

1edb64b4d914142fce5b69ed543b2481a1afc387aaa5a759b2cd59f678c260173e071584f6
b22ea3d

Contents of a modified illumio-ven-secret.yml file are shown below.

#
Copyright 2013-2021 Illumio, Inc. All Rights Reserved.
#
VEN 21.5.x-xxxx

apiVersion: v1

Illumio Core for Kubernetes

58

kind: Secret
metadata:
 name: illumio-ven-config
 namespace: illumio-system
type: Opaque
stringData:
 ilo_server: mypce.example.com:8443 # Example: mypce.example.com:8443
 ilo_code: 1edb64b4d914142fce5b69ed543b2481a1afc387aaa5a759b2cd59f678c
 260173e071584f6b22ea3d # activation-code

CAUTION
Do not use 'https://' for the value associated with the ilo_server: key.
This is a known issue and will be fixed in a future release.

4. Save the changes.
5. Create the C-VEN secret using the file.

• To create the secret for Kubernetes:

kubectl apply -f illumio-ven-secret.yml

• To create the secret for OpenShift:

oc apply -f illumio-ven-secret.yml

6. Verify the C-VEN secret creation in your cluster.
• To verify the creation of the secret for Kubernetes:

kubectl get secret -n illumio-system

oc get secret -n illumio-system

Deploy C-VENs
Modify the C-VEN configuration file to point to the correct Docker image. The example in this
document has illumio-ven:21.5.x-xxxx uploaded to registry.example.com:443, so the
image link in this example is: registry.example.com:443/illumio-ven:21.5.x-xxxx

1. Edit the C-VEN configuration YAML file. The file name is illumio-ven-kubernetes.yml
for a Kubernetes cluster and illumio-ven-openshift.yml for an OpenShift cluster.
• Locate the spec: > template: > spec: > containers: section inside the YAML file.

Modify the image link in the image: attribute.
2. Save the changes.

Below is a snippet from an example of the C-VEN configuration for Kubernetes or Open-
Shift to illustrate the image location.

#
Copyright 2013-2021 Illumio, Inc. All Rights Reserved.
#
VEN 21.5.x-xxxx

apiVersion: v1
kind: ServiceAccount
metadata:
 name: illumio-ven
 namespace: illumio-system

Illumio Core for Kubernetes

59

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: illumio-ven
 namespace: illumio-system
 labels:
 k8s-app: illumio-ven
spec:
 selector:
 matchLabels:
 name: illumio-ven
 template:
 metadata:
 labels:
 name: illumio-ven
 spec:
 priorityClassName: system-node-critical
 serviceAccountName: illumio-ven
 hostNetwork: true
 hostPID: true
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: illumio-ven
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_server
 - name: ILO_CODE
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_code
 command: ["/ven-init", "activate"]
 image: registry.example.com/illumio-ven:21.5.x-xxxx
 imagePullPolicy: IfNotPresent
 <...>

3. (Optional) Reference your root CA certificate.
If you are using a private PKI to sign your PCE certificate, make sure you add the refer-
ences to the root CA certificate that signed the PCE certificate. If Kubelink is already de-
ployed in the cluster, the ConfigMap used to store the root CA certificate should already
be created in the cluster.
Add the following sections to the C-VEN manifest file to reference the ConfigMap con-
taining the root CA certificate:
• volumeMounts (under spec.template.spec.containers)
• volumes (under spec.template.spec)
root-ca is the name used to designate the new volume mounted in the container. You
can modify it according to your naming convention.

 volumeMounts:
 - name: root-ca

Illumio Core for Kubernetes

60

 mountPath: /etc/pki/tls/ilo_certs/
 readOnly: false
 volumes:
 - name: root-ca
 configMap:
 name: root-ca-config

4. (Optional) Reference your container registry secret. See the "Authenticate Kubernetes
Cluster with Container Registry" topic.
In case you need to authenticate against your container registry when you pull an image
from your cluster, you must make reference to the secret previously created for the con-
tainer registry. Locate the spec: > template: > spec: section inside the YAML file and
add the following lines:

 imagePullSecrets:
 - name: <container-registry-secret-name>

IMPORTANT
Indentation matters in a YAML file. Make sure there are 6 spaces to the left
before inserting the 'imagePullSecrets' keyword and align the '-' character
below it with the 'i' of the 'imagePullSecrets' keyword.

NOTE
From the 20.2.0 and later releases, the container runtime detection is done
automatically. You do not need to manually modify the container runtime
socket path. You should do this 'Modify the container runtime socket path'
step only if you are using a customized configuration for your container
runtime.

5. (Optional) Modify the container runtime socket path.
In some cases, you have to modify the default socket path the C-VEN relies on to get
information about the containers due to the following reasons:
• A non-conventional or customized container runtime socket path
• Two concurrent container runtimes
In this case, you may have to modify the default mount path for the unixsocks volume in
the C-VEN configuration file.
For example, you want to listen on the 'containerd' container runtime, however, docker is
also used on the nodes. You should modify the file as shown below, so that the C-VEN
listens to events on 'containerd':

 volumeMounts:
 - name: unixsocks
 mountPath: /var/run/containerd/
 <...>
 volumes:
 - name: unixsocks
 hostPath:
 path: /var/run/containerd/
 type: Directory
 <...>

6. Save the changes.
7. Deploy C-VEN.

Illumio Core for Kubernetes

61

• For Kubernetes:

kubectl apply -f illumio-ven-kubernetes.yml

• For OpenShift:

oc apply -f illumio-ven-openshift.yml

8. Verify the deployment.
• For Kubernetes:

kubectl get pods -n illumio-system

oc get pods -n illumio-system

The illumio-ven-xxxxxxxxxx-xxxxx Pods should be in the "Running" state.

After C-VENs are successfully deployed, you can check the cluster information in the Illumio
PCE UI. From the main menu, navigate to Infrastructure > Container Clusters.

You can also verify in the PCE UI that the C-VENs were successfully deployed by checking
the following:

• Under the Workload tab, nodes that are part of your Kubernetes or OpenShift cluster
should be listed. An example is shown below.

• Under the Container Workloads tab, Pods deployed in your Kubernetes or OpenShift
cluster should be listed. An example is shown below.

• Illumination Map now displays system and application Pods running in your cluster.

Illumio Core for Kubernetes

62

Re-Label Your Cluster Nodes

NOTE
Re-labeling the cluster nodes is optional.

In the case of self-managed deployments in which both Master and Worker nodes are man-
aged, you may want to re-label your nodes to differentiate Master nodes from Worker nodes.
Doing this helps when you are writing different policies for the Worker and Master nodes or if
you want to segment these nodes differently.

To re-label your cluster nodes:

1. In the PCE UI, go to Infrastructure > Container Clusters > YourClusterName > Work-
loads.

2. Select the workloads you want to re-label.
3. Click Edit Labels to assign the new labels (for example, Master and Worker).

4. After re-labeling your cluster nodes, the nodes part of the cluster reflect the updated
label(s).

Configure Security Policies for Containerized Environments
Security policies are a set of rules that you can configure to secure your Kubernetes or Open-
Shift environment. You can follow the guidelines and examples described in this section to
write rules for your Kubernetes or OpenShift clusters and containerized applications, which
you can then modify incrementally.

IP and FQDN Lists

FQDN Services for Kubernetes
There are some basic services that need to be defined as IP lists, such as docker.io or the
Kubernetes API server. These FQDNs will be used later in the ring-fence policy for the Kuber-
netes cluster. The following FQDNs are commonly found to be dependencies for Kubernetes
and should be defined inside Illumio Core's IP list policy objects:

• docker.io
• myregistry.example.com

The PCE FQDN is required for Kubelink for example, mypce.example.com.

Illumio Core for Kubernetes

63

IP Lists for Kubernetes
Additionally, the following subnets or IP addresses should be defined in the IP list policy
objects:

• Kubernetes Pod Network: Locate subnet in master node’s /etc/kubernetes/kubeadm-
config.yaml file (Ubuntu) under networking: > podSubnet: section, for example,
10.200.0.0/16

• Kubernetes Service Network: Locate subnet in master node’s /etc/kubernetes/ku-
beadm-config.yaml file (Ubuntu) under networking > serviceSubnet section, for ex-
ample, 10.100.0.0/16

The screenshot below displays IP lists created for Kubernetes Infrastructure dependencies.

FQDN Services for OpenShift
There are some basic services that should be defined as IP lists such as docker.io or the Ku-
bernetes API server. These FQDNs will be used later in the ring fence policy for the OpenShift
cluster. The following FQDNs are commonly found to be dependencies for OpenShift and
should be defined in Illumio IP list policy objects:

• docker.io
• registry.access.redhat.com
• access.redhat.com
• subscription.rhsm.redhat.com
• github.com

The PCE FQDN is required for Kubelink, for example, mypce.example.com.

IP Lists for OpenShift
Additionally, the following subnets or IP addresses should be defined in IP list policy objects:

Illumio Core for Kubernetes

64

• OpenShift Pod Network: Find subnet in master node's /etc/origin/master/master-
config.yaml file under networkConfig > clusterNetworkCIDR section, for example,
10.128.0.0/14

• OpenShift Service Network: Find subnet in master node's /etc/origin/master/master-
config.yaml file under networkConfig > serviceNetworkCIDR section, for example,
172.30.0.0/16

The screenshot below displays IP lists created for OpenShift Infrastructure dependencies. It
references the IP lists which automatically come with the Illumio Segmentation Template.

NOTE
The IP lists mentioned above are for FQDNs and IP addresses that Illumio has
found to be necessary for basic Kubernetes or OpenShift deployments. Each
deployment varies and may have dependencies on additional FQDNs or IP
addresses that are not mentioned in this document.

If your Kubernetes or OpenShift infrastructure needs to communicate with
external services that are not mentioned here, then make sure you describe
those in the IP lists.

Rules for Kubernetes or OpenShift Clusters

This section assumes the following:

• Kubernetes or OpenShift cluster nodes and infrastructure Pods are activated and managed.
• Labels have been assigned to each workload and container workload.
• All cluster nodes and infrastructure Pods are in the same application group, which means

they have been assigned the same application, environment, and location labels.

Illumio Core for Kubernetes

65

Kubernetes
Create a ruleset for the Kubernetes cluster and control plane Pods. The labels assigned to all
of the Kubernetes nodes and control Pod workloads should fall within the scope.

Add the following lines of policy to the ruleset.

Intra-Scope Rules

Providers Serv-
ices

Con-
sumers

Notes

docker.io (IP
List)

myregistry.ex-
ample.com (IP
List)

All Serv-
ices

All Work-
loads

Containerized environments depend on various external resour-
ces to perform basic operations such as pulling a docker im-
age. Illumio has determined that the listed FQDNs are essential
to Kubernetes deployments. Each deployment varies and may
have dependencies on additional resources. If your container
infrastructure has requirements for FQDNs not mentioned in this
document, then you should include those FQDNs in this policy
line.

Illumio PCE (IP
List)

8443 TCP Kubelink Kubelink sends context about the Kubernetes cluster to the PCE
over TCP 8443 port.

All Workloads 53 TCP

53 UDP

Kuber-
netes Pod
Network
(IP List)

The Kubernetes cluster provides internal DNS services to the
pods (using coreDNS in this example). This policy enables inter-
nal DNS resolution for these tasks.

All Workloads

(Uses Virtual
Services and
Workloads)

All Serv-
ices

All Work-
loads

Any communication across all managed Kubernetes nodes or
managed infrastructure pods which will be permitted by this
policy.

Kubernetes Pod
Network (IP
List)

All Serv-
ices

All Work-
loads

Communications across initiated by any workload which pass
through service front ends will be allowed by this policy. It al-
so covers other IP addresses on the Kubernetes pod network
which are not discovered by the PCE. Critical for infrastructure
functions including but not limited to liveness probes and infra-
structure service front ends (Kubernetes).

Extra-scope Rules

Illumio Core for Kubernetes

66

Pro-
viders

Services Consum-
ers

Notes

All
Work-
loads

6443 TCP

22 TCP

Any
0.0.0.0/0 (IP
List)

Optional: Opens up ports which are purposed for remote manage-
ment. For example, TCP 22 to provide SSH services to Kubernetes
admins. TCP 6443 provides Kubernetes admins with dashboard
services. The Dashboard may vary across Kubernetes deployments.
The ports can be modified to what is used in your environment and
consuming IP list can be changed to corporate subnets or jump
servers.

Worker 80 TCP

443 TCP

Any
0.0.0.0/0 (IP
List)

This policy assumes Ingress Controllers exist on Worker nodes. If the
ingress controllers exist on other nodes, then modify the provider to
the host where the Ingress controllers reside. This rule opens default
front end ports which are used to access containerized applications
from external IP addresses.

OpenShift
Create a ruleset for the OpenShift cluster and control plane Pods. The labels assigned to all
of the OpenShift nodes and control Pod workloads should fall within the scope.

Add the following lines of policy to the ruleset.

NOTE
The IP lists referenced in this ruleset are commonly used public registries
(e.g., docker.io) for container environments. If you have confirmed that your
OpenShift environment does not depend on a public registry shown below,
then it is recommended that you remove the IP lists from the ruleset.

Intra-scope Rules

Illumio Core for Kubernetes

67

Providers Serv-
ices

Con-
sumers

Notes

docker.io (IP List)

registry.access.red-
hat.com (IP List)

registry.webscaleone.info
(IP LIst)

access.redhat.com (IP
List)

subscription.rhsm.red-
hat.com (IP List)

All Serv-
ices

All Work-
loads

Containerized environments depend on various external
resources to perform basic operations such as pulling
a docker image. Illumio has determined that the listed
FQDNs are essential to OpenShift deployments. Each
deployment varies and may have dependencies on ad-
ditional resources. If your container infrastructure has re-
quirements for FQDNs not mentioned in this doc, then
you should include those FQDNs in this policy line.

Illumio PCE (IP List) 8443
TCP

Kubelink Kubelink sends context about the OpenShift cluster to
the PCE over TCP 8443 port.

All Workloads 53 TCP

53 UDP

Open-
Shift Pod
Network
(IP List)

The OpenShift cluster in this example uses DNSmasq
meaning each cluster node listens on port 53 and pro-
vides internal DNS services to the pods. This policy ena-
bles internal DNS resolution for these tasks.

All Workloads

(Uses Virtual Services
and Workloads)

All Serv-
ices

All Work-
loads

Any communication across all managed OpenShift no-
des or managed infrastructure pods which will be per-
mitted by this policy.

OpenShift Pod Network
(IP List)

OpenShift Service Net-
work (IP List)

All Serv-
ices

All Work-
loads

Communications across initiated by any workload which
pass through service front ends will be allowed by this
policy. It also covers other IP addresses on the OpenShift
pod network which are not discovered by the PCE. Criti-
cal for infrastructure functions including but not limited
to liveness probes and infrastructure service front ends
(Kubernetes).

Extra-Scope Rules

Pro-
viders

Serv-
ices

Consum-
ers

Notes

All
Work-
loads

8443 TCP

22 TCP

Any
0.0.0.0/0
(IP List)

Optional: Opens up ports which are purposed for remote management.
For example, TCP 22 to provide SSH services to OpenShift admins.
TCP 8443 provides OpenShift admins with webconsole services. Web-
console may vary across OpenShift deployments. The ports can be
modified to server other remote management services and consuming
IP list can be changed to corporate subnets or jump servers.

Infra
(Role)

TCP 80

TCP 443

Any
0.0.0.0/0
(IP List)

This policy assumes the router exists only on dedicated Infra nodes.
If the router exists on other nodes, then modify the provider to the
host where the router resides. This rule opens default front end router
ports which are used to access containerized applications from external
IP addresses. As you start to open up application pods to the outside
world, you will need to add the application's exposed port to this poli-
cy's list of services. For example, you spin up a httpd server and expose
that server on TCP 8080. The first step to allow access to the httpd
server from outside is to add TCP 8080 to this line of policy.

Illumio Core for Kubernetes

68

NOTE
The IP lists referenced in the rulesets are commonly used public registries (for
example, docker.io) for container environments. If you have confirmed that
your Kubernetes or OpenShift environment does not depend on the public
registries mentioned above, then it is recommended that you remove the IP
lists from the ruleset.

Rules and Traffic Considerations with CLAS

In Container Local Actor Store (CLAS) deployments, be sure to take into account the follow-
ing special traffic and policy rules considerations that differ from legacy non-CLAS environ-
ments that are described in other sections of this chapter.

Mandatory Rules
The CLAS architecture requires mandatory infrastructure rules to be in place for the cluster
to work properly. Do not upgrade to the CLAS mode, or move the cluster to Full Enforce-
ment until the following infrastructure rules are configured:

• Node -> Service CIDR IP list (9000/TCP)
• Any (0.0.0.0/0 and ::0) -> Node (2379-2380/TCP, 2379-2380/UDP)

Mandatory rules for namespace enforcement
The following rules must be set on the PCE to ensure the illumio-system namespace is fully
enforced (or the custom namespace that is used instead of the default of illumio-system):

• illumio-kubelink-* → Any; 2379 TCP (pod to arbitrary IP address)
This rule is necessary for connecting a illumio-kubelink-* pod to a illumio-storage-* pod.
All destination IP addresses are allowed, because the IP address of illumio-storage-* pod
changes after it is restarted.

• Any → illumio-storage-*; 2379 TCP (arbitrary IP address to pod)
The same explanation as for the above rule, but the ingress on illumio-storage-* pod is
allowed here.

• Node → illumio-kubelink-*; 8080 TCP, 8081 TCP, 9000 TCP (node to pod)
This rule is needed for successfully connecting C-VEN pods to illumio-kubelink-* pods.

• illumio-kubelink-* → PCE FQDN; 8443 TCP (pod to FQDN IP list)
The illumio-kubelink-* pod must be able to connect to PCE. Use the FQDN IP list containing
the URL of the PCE to do this. The outgoing connections using the DNS port are always
allowed by an implicit rule installed on C-VEN pods Therefore you need not list any rules
for DNS.

• illumio-kubelink-* → Kuberenetes API; 443 TCP (for example, pod to IP list of all possible
ClusterIPs of Kubernetes Services)
This rule ensures the illumio-kubelink-* pod can connect to the Kubernetes API, which is
required.

ClusterIP Rules
In the CLAS environment, ClusterIP ports are now represented as Kubernetes Workloads
when viewing traffic, and not as Virtual Services, as before.

Illumio Core for Kubernetes

69

If you want to migrate from a legacy (non-CLAS) to a CLAS environment, you must make
sure that all rules that apply to ClusterIP Services are changed to "Use Workloads" at a
specific time within the process of upgrading to CLAS. For complete details, see Upgrade to
CLAS Architecture [92].

Because Services are now Kubernetes Workloads, the "All Workloads" flag in a rule will
include all Services. Do not use "All Workloads" as a Destination in a rule. Use a more specific
label instead that targets the Service.

All rules that include a label of at least one ClusterIP service will have specified ports internal-
ly replaced. However - this is not reflected in PCE UI, where the rule still displays ports.

NodePort and LoadBalancer services remain being shown as Virtual Services in the PCE.
However, the ClusterIP part of a NodePort or LoadBalancer service now exists as a Kuber-
netes Workload, and is linked with the Virtual Service in the PCE.

General Traffic View Changes
The following is a summary of general changes to traffic views in a CLAS-enabled cluster:

• Kubernetes workloads (for example, Deployments) are now shown in the UI as Kubernetes
Workloads, and not as Container Workloads. Container Workloads (Pods) are still shown in
non-CLAS clusters.

• ClusterIP Virtual Services are now shown as Kubernetes Workloads.
• NodePort and LoadBalancer services remain Virtual Services in the PCE.
• Traffic from other Virtual Services to Kubernetes Workloads is not shown.
• Traffic between Kubernetes Workloads within a cluster is shown.

CLAS Traffic Limitations
Consider the following differences and limitations in these scenarios when viewing traffic and
writing rules in a CLAS environment:

• Pod to Host
When a Pod is on a different Node than target Node, additional traffic is shown occurring
from the Pod's Node to the target Node. This traffic cannot be selectively hidden with
filters because it behaves the same way as traffic from host to host that should not be
hidden. (This behavior occurs only when Calico is used as the CNI.)

• Pod to ClusterIP
Additional direct traffic occurs from a source Pod to a source Target, regardless whether it
is destined for the same node or a different target node.

• Managed Workload to NodePort
Additional traffic is shown for a Client's direct access to a target Pod, and from a Used
Node to a target Pod.
Also, crucial traffic destined for a NodePort is actually showing the Node with the Node-
Port's port.

• Unmanaged Workload (or Internet) to NodePort
Additional traffic is shown for a Client's direct access to a target Pod, and from a Used
Node to a target Pod.
Also, in the traffic from the Client to the NodePort virtual service, we are missing the crucial
traffic with NodePort's port.

• Draft Traffic to Virtual Services

Illumio Core for Kubernetes

70

Traffic in Draft mode where the destination is a Virtual Service is marked as Potentially
Blocked.

Rules for Containerized Applications

This section covers different scenarios on writing rules for containerized applications.

Access Services from within the Cluster
For connections to a service from within the cluster, the Pods connect to a Service IP and the
connections get distributed to the Pods.

Kubernetes
The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Illumio Core for Kubernetes

71

Source Service Desti-
nation

Notes

Database (Vir-
tual Service
Role label for
database serv-
ice) + Use Vir-
tual Services
Only

Derived
from Pro-
vider Vir-
tual Serv-
ice

Web
(Role
for Web
pods)

After the database service gets discovered by the PCE it becomes
a virtual service object in the PCE -- not a container workload. The
provider should be the role label of the virtual service plus the "Use
Virtual Service Only" option. The Consumer in this example is the
Web pod. Use the Web Role label which describes the pod. Leave
the Providing Service empty. Once the rule is saved, it will automati-
cally populate with Derived from Provider Virtual Service.

NOTE
This does not allow Web pods to directly access
Database pods through the pod IP. This only al-
lows traffic through the service.

OpenShift
The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Production HQ

Intra-Scope Rule

Source Service Desti-
nation

Notes

Database (Vir-
tual Service
Role label for
database serv-
ice) + Use Vir-
tual Services
Only

Derived
from Pro-
vider Vir-
tual Serv-
ice

Web
(Role
for Web
pods)

After the database service gets discovered by the PCE it becomes
a virtual service object in the PCE -- not a container workload. The
provider should be the role label of the virtual service plus the "Use
Virtual Service Only" option. The Consumer in this example is the
Web pod. Use the Web Role label which describes the pod. Leave
the Providing Service empty. Once the rule is saved, it will automati-
cally populate with Derived from Provider Virtual Service.

NOTE
This does not allow Web pods to directly access
Database pods through the pod IP. This only al-
lows traffic through the service.

Access Services from Outside the Cluster

Kubernetes
With Kubernetes, connections to a containerized application from the outside world can be
handled in many different ways. In this release, Illumio supports only configurations which

Illumio Core for Kubernetes

72

expose applications via the Kubernetes NGINX ingress controller (HostNetwork type only).
Exposing applications using HostPort are not supported.

In typical Kubernetes deployments, connections to a containerized application from the
outside world go through the ingress controllers, then the connection goes directly from
controllers to the pods - not the service. Example of scenario and rule coverage are shown
below.

Scenario:

• The Kubernetes cluster and containerized applications are in the Development environment
• The containerized application is called RiskAssessment and each Pod within the applica-

tion listens on TCP 8080
• The RiskAssessment application is exposed to the outside world via the ingress controller.

The controller listens on TCP port 80 for the RiskAssessment application
• In Illumio, the RiskAssessment workloads (Pods) provide to the controller on TCP 8080.

The controller provides TCP 80 to the outside world.

The rules you need to write are:

Example Ruleset 1

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Provider Providing Service Consumer

All Workloads All Services All Workloads

Extra-Scope Rule

Illumio Core for Kubernetes

73

Provider Providing Serv-
ice

Consumer Notes

Risk Assessment TCP 8080 Worker The consumer should be the role label of the no-
des which nest the Ingress controllers.

Example Ruleset 2

The second ruleset opens the ingress controller to the external network. The rule and ruleset
below should have been created from the Rules for Kubernetes or OpenShift Cluster [65]
section of this guide. You can modify the ruleset as needed.

Scope

Application Environment Location Notes

Kubernetes Infrastructure Development Cloud The scope of the ruleset should match the Ku-
bernetes infrastructure scope.

Intra-Scope Rule

Provider Providing
Service

Consum-
er

Notes

Worker
Node(s)

TCP 80 External
Network

This rule should exist from the Rules for Kubernetes or Open-
Shift Cluster [65] section. The provider should be the Kuber-
netes node(s) which contain the ingress controller. The consum-
er can be an IP List such as 0.0.0.0/0 (any), HQ, Corporate,
or employee subnet that requires connectivity into the exposed
container workloads.

OpenShift
Connections to a containerized application from the outside world go through the OpenShift
Router, then the connection goes directly from router to the Pods - not the service. Example
of scenario and rule coverage are shown below.

Scenario:

• The OpenShift cluster and containerized applications are in the development environment
• The containerized application is called RiskAssessment and each Pod within the applica-

tion listens on TCP 8080
• The RiskAssessment application is exposed to the outside world via the router. The router

listens on TCP port 80 for the RiskAssessment application
• In Illumio, the RiskAssessment workloads (Pods) provide to the router on TCP 8080. The

router provides TCP 80 to the outside world.

Illumio Core for Kubernetes

74

The rules you need to write are:

Example Ruleset 1

Scope

Application Environment Location

Risk Assessment Production HQ

Intra-Scope Rule

Provider Providing Service Consumer

All Workloads All Services All Workloads

Extra-Scope Rule

Provider Providing
Service

Consumer Notes

Risk Assess-
ment

TCP 8080 IST Infra (Role) Consumer refers to the Illumio Segmentation Tem-
plate. The consumer should be the role label of the
node(s) which nest the OpenShift Router.

Example Ruleset 2

The following Ruleset is from the Segmentation Template and you can modify it as needed.

Scope

Illumio Core for Kubernetes

75

Application Environment Location Notes

IST OpenShift Infrastruc-
ture

IST Production IST HQ Ruleset is derived from Illumio Segmentation
Template. The scope should match the Open-
Shift cluster.

Intra-Scope Rule

Provider Providing
Service

Consum-
er

Notes

IST Infra
(Role)

TCP 80 External Net-
work

This rule is included in Illumio Segmentation Template. The
provider should be the OpenShift cluster node(s) which nest
the router. The consumer can be an IP list such as 0.0.0.0/0
(any), HQ, Corporate, or employee subnet. The IST default in-
cludes 0.0.0.0/0 (any) IP list.

Outbound Connections
The outbound connections are required to access repositories.

Kubernetes and OpenShift
The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Development Cloud

Intra-Scope Rule

Illumio Core for Kubernetes

76

Provid-
er

Provid-
ing Serv-
ice

Consum-
er

Notes

docker.io
(IP List)

All Services Database
(Role for
Postgres
Pods)

Once the database service gets discovered by the PCE it becomes
a virtual service object in the PCE - not a container workload. The
provider should be the role label of the virtual service plus the "Use
Virtual Service Only" option. The Consumer in this example is the
Web Pod. Use the Web Role label which describes the Pod. Leave
the Providing Service empty. Once the rule is saved, it will automati-
cally populate with Derived from Provider Virtual Service.

Liveness Probes
Containerized applications may require periodic health checks known as liveness probes and
readiness probes. Each application includes a health check YAML file which contains liveness
and readiness probe configurations. The health checks between the container node and the
local container workload may rely on TCP ports. Illumio has included a consumer object
called Container Host for this use case. The Container Host object represents the container
node or nodes which host the Pod(s). The example below uses the Container Host object as
a consumer for Liveness and Readiness Probes.

NOTE
The Container Host must always fall under an Extra-Scope rule.

The rules you need to write are:

Kubernetes and OpenShift
The rules you need to write are:

Example Ruleset

Scope

Application Environment Location

Risk Assessment Development Cloud

Illumio Core for Kubernetes

77

Extra-Scope Rule

Provider Providing
Service

Consumer Notes

All Work-
loads

TCP 9090 Container Host
(built-in Illumio
object)

In this example, the Risk Assessment health check configura-
tion indicates that liveness probe occurs on TCP 9090. Liv-
eness probe ports/protocols may vary across applications.
Container Host is an object built into the PCE by default and
represents any node which hosts the respective Pod(s).

NodePort Support on Kubernetes and OpenShift
Kubernetes (and OpenShift) provide a mechanism to access cluster services from the outside
world, of type NodePort. This service exposes a port on all nodes in the cluster on which
traffic will be forwarded to any of the backing pods that match the service's selector.

Scenario:

• The Kubernetes cluster and containerized applications are in the Production environment.
• The containerized application is called RiskAssessment, and each Pod within the applica-

tion listens on TCP 8080.
• The RiskAssessment application is exposed to the outside world via a FrontEnd service

with type NodePort.
• The exact NodePort in use is not specified, but is automatically allocated by Kubernetes.
• There may be clients to the FrontEnd service within the cluster or outside the cluster - in

both cases, they are labeled as Client.

The rules you need to write are:

Example Ruleset 1: Internal and External Access to Service

Scope

Application Environment Location

Risk Assessment Production Cloud

Extra-Scope Rule

Provider Providing
Service

Consumer Notes

FrontEnd (Virtual
Service Role label for
Risk Assessment serv-
ice) + Use Virtual Serv-
ices Only

Derived from
Provider Virtual
Service

Client (Role la-
bel for Web
pods and exter-
nal workloads)

Once the Risk Assessment service gets dis-
covered by the PCE it becomes a virtual
service object in the PCE. The Provider here
should be the role label of the virtual service
plus the "Use Virtual Service Only" option.

Illumio Core for Kubernetes

78

Rules for Persistent Storage

This section only applies to deployments which require communication with external storage
nodes over NFS, iSCSI, and others for persistent storage. If the cluster or Pods have external
storage dependencies, then you need a policy to allow outbound communications to the
storage node. The storage node can be represented as an unmanaged workload or IP list.

The following is an example of outbound policy to a NFS node, which is represented by an IP
list.

Kubernetes
The following is an example of an outbound policy to an NFS node, which is represented by
an IP list:

Example Ruleset 1

Scope

Application Environment Location Notes

Kubernetes Infrastructure Development Cloud Kubernetes cluster

Intra-Scope Rule

Provider Providing Serv-
ice

Consumer Notes

NFS Storage (IP
List)

TCP 2049 All Workloads All Kubernetes nodes and infrastructure Pods
can communicate outbound to NFS over the NFS
TCP port.

Example Ruleset 2

Scope

Application Environment Location Notes

ERP Development Cloud From httpd example

Intra-Scope Rule

Provider Providing Service Consumer Notes

NFS Storage (IP List) TCP 2049 All Workloads All Pods can talk outbound to NFS over the
NFS TCP port.

Illumio Core for Kubernetes

79

OpenShift
The following is an example of an outbound policy to an NFS node, which is represented by
an IP list:

Example Ruleset 1

Scope

Application Environment Location Notes

OpenShift Infrastructure Development Cloud OpenShift cluster

Intra-Scope Rule

Provider Providing Serv-
ice

Consumer Notes

NFS Storage (IP
List)

TCP 2049 All Workloads All OpenShift nodes and infrastructure Pods can
communicate outbound to NFS over the NFS
TCP port.

Example Ruleset 2

Scope

Application Environment Location Notes

ERP Development Cloud From httpd example

Intra-Scope Rule

Provider Providing Service Consumer Notes

NFS Storage (IP List) TCP 2049 All Workloads All Pods can talk outbound to NFS over the
NFS TCP port.

Local Policy Convergence Controller

The local policy convergence controller provides a deterministic way of setting the readiness
state of pods in your cluster after local policy has converged. By controlling the readiness
state of pods, you can prevent them from receiving and sending traffic through Kubernetes
until they are ready. Using a controller ensures that the network and security infrastructure is
ready for a multi-microservice application.

In this release, the Kubernetes Custom Pod Conditions feature introduced in v1.14 is available
for containerized VENs.

Illumio Core for Kubernetes

80

About the Controller Behavior
By default, the readiness gate is not specified on a pod spec and the C-VEN does not affect
the readiness state of the pod regardless of annotations or Illumio managed state.

When the Illumio readiness gate is specified on a pod spec, the PCE completes the following
actions when a new pod is created:

1. Sends the C-VEN policy for the new pod P.
2. When pod P is managed, the C-VEN applies local policy for the new pod P.
3. The C-VEN waits for a timer to expire to allow peers to apply policy on their end (such as,

updating the new pod P IP address).
By default, the timer uses the following values:
• If the pod is managed by Illumio, the timer is set to 15 seconds.
• If the pod is not managed by Illumio, the timer is set to 0 seconds.

TIP
To configure a custom value for the timer duration, see Timer Customiza-
tion [82].

4. The C-VEN sets the readiness gate pod condition to “True.”
The pod is now considered “Ready” by Kubernetes.

Configure the Illumio Readiness Gate
To use a local policy convergence controller, specify the Illumio readiness gate under readi-
nessGates.conditionType in the pod spec YAML.

See the following example pod spec YAML file:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-deploy
spec:
 selector:
 matchLabels:
 app: my-pod
 replicas: 2
 template:
 metadata:
 labels:
 app: my-pod
 spec:
 readinessGates:
<----- declare readiness gates
 - conditionType: "com.illumio.policy-ready"
 # <----- Illumio policy convergence readiness gate
 containers:
 - name: my-pod-web
 image: nginx
 ports:
 - containerPort: 80

Illumio Core for Kubernetes

81

Timer Customization
You can customize the timer cluster-wide or pre-pod.

NOTE
When configuring a custom timer by using the DaemonSet environment varia-
ble or an annotation, you are limited to specifying 0-300 seconds.

Cluster Wide Timer Customization
To customize the timer duration on a cluster-wide basis, set the readiness gate timer variable
in the C-VEN DaemonSet YAML.

See the following YAML file:

...
containers:
 - name: illumio-ven
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_server
 - name: ILO_CODE
 valueFrom:
 secretKeyRef:
 name: illumio-ven-config
 key: ilo_code
 - name: ILO_K8S_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 - name: ILO_K8S_READINESS_TIMER
 # <--- custom readiness gate timer across the cluster
 value: "20"
 # <--- timer value
...

Pre-pod Timer Customization
To customize the timer duration for specific pods, set the Illumio readiness gate timer anno-
tation on the pod spec.

See the following example deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-deploy
spec:

Illumio Core for Kubernetes

82

 selector:
 matchLabels:
 app: my-pod
 replicas: 2
 template:
 metadata:
 labels:
 app: my-pod
 annotations:
 com.illumio.readiness-gate-timer: "20"
<----- custom readiness gate timer for all pods in this deployment
 spec:
 readinessGates:
 - conditionType: "com.illumio.policy-ready"
 containers:
 - name: my-pod-web
 image: nginx
 ports:
 - containerPort: 80

Track the State of the Readiness Gate
You can track the state of the readiness gate by running either of the following commands:

• kubectl get pod -o wide

• kubectl get ep -o wide

Example: State of the Readiness Gate
This example shows a cluster with Kubelink and the C-VEN deployed and running. When you
initially deploy or scaled up the Illumio Readiness Gate, you see the following values:

NOTE
The state of gate readiness appears in the "READINESS GATES" column.

$ kubectl get pod,ep -o wide
NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE READINESS GATES
pod/my-deploy-855dfbf94f-gwz7c 1/1 Running 1 4d20h
172.17.0.7 ubuntu20 <none> 0/1
pod/my-deploy-855dfbf94f-p7czp 1/1 Running 1 4d20h
172.17.0.6 ubuntu20 <none> 0/1

NAME ENDPOINTS AGE
endpoints/kubernetes 10.0.2.15:8443 19d
endpoints/my-service 4d22h

In this example, the readiness gates are marked as 0/1 for both pods and my-service does
not have any available endpoints. After the VEN has processed the policy for the new pods
and the timer expires, it sets the readiness gate to “True” for each pod and you see the
following output:

Illumio Core for Kubernetes

83

$ kubectl get pod,ep -o wide
NAME READY STATUS RESTARTS AGE
IP NODE NOMINATED NODE READINESS GATES
pod/my-deploy-855dfbf94f-gwz7c 1/1 Running 1 4d20h
172.17.0.7 ubuntu20 <none> 1/1
pod/my-deploy-855dfbf94f-p7czp 1/1 Running 1 4d20h
172.17.0.6 ubuntu20 <none> 1/1

NAME ENDPOINTS AGE
endpoints/kubernetes 10.0.2.15:8443 19d
endpoints/my-service 172.17.0.6:9376,172.17.0.7:9376 4d22h

To view greater detail about the pod conditions, run the command kubectl get pod <pod
name> -o yaml:

$ kubectl get pod my-deploy-855dfbf94f-gwz7c -o yaml
...
status:
 conditions:
 - lastProbeTime: null // <--
 lastTransitionTime: "2021-05-18T20:26:26Z" // <--
 message: Pod Policy Ready // <-- this pod condition
is set by VEN
 reason: PolicyReady // <--
 status: "True" // <--
 type: illumio.com/policy-ready // <--
 - lastProbeTime: null
 lastTransitionTime: "2021-05-18T20:25:51Z"
 status: "True"
 type: Initialized
 - lastProbeTime: null
 lastTransitionTime: "2021-05-19T19:56:24Z"
 status: "True"
 type: Ready
// <-- this is only set to True after all readiness gates are set to True
 - lastProbeTime: null
 lastTransitionTime: "2021-05-19T19:56:24Z"
 status: "True"
 type: ContainersReady
 - lastProbeTime: null
 lastTransitionTime: "2021-05-18T20:25:51Z"
 status: "True"
 type: PodScheduled
...

Firewall Coexistence on Pods

The Illumio C-VEN configures iptables on each host and each Pod (in a managed name-
space). By default, Illumio Core coexistence mode is set to Exclusive meaning the C-VEN
will take full control of iptables and flush any rules or chains that are not created by Illumio
Core. In containerized environments, this may affect communications to/from container com-
ponents (Docker, Kubernetes, Illumio Kubelink). Therefore, Illumio Core must allow firewall
coexistence in order to achieve non-disruptive installation and deployment.

Illumio Core for Kubernetes

84

NOTE
For Workloads part of a Container cluster (Kubernetes or OpenShift nodes),
firewall coexistence is enabled by default if Kubelink was deployed and is "In
Sync" with the PCE (prior to the C-VEN installation).

In some cases, there may be some Pods that implement iptables rules inside the Pod name-
space for the containerized application to work (VPN, NAT, and others). In order to support
such requirements from containerized applications, you should enable firewall coexistence for
these Pods.

In order to allow firewall coexistence, you must set a scope of Illumio labels in the firewall
coexistence configuration. Once you provision a firewall coexistence scope, the PCE will
enable firewall coexistence configuration on all the Pods whose labels fall within the scope.

NOTE
Labels assigned to Kubernetes cluster nodes must fall within the firewall coex-
istence scope. This is not a requirement for the labels assigned to container
workloads.

To configure firewall coexistence:

1. In the PCE UI, navigate to Settings > Security.
2. On the Security page, select the Manage Firewall Coexistence tab.
3. Click Edit.
4. In the edit wizard, click Add. The Add Firewall Coexistence Labels and Policy State

wizard will pop-up.
5. Select a scope of Illumio labels. The scope must include the labels you intend to use for

your Kubernetes cluster nodes.
a. Select All for Policy State.
b. Illumio Core is Primary Firewall - Select your preference.

i. Yes = (Recommended) Illumio iptable chains will be at the top of iptables at all
times. Non-Illumio iptable chains can coexist, but will follow after Illumio chains.

ii. No = (Not Recommended) Non-Illumio iptable chains may coexist and can be
placed before Illumio chains.

NOTE
For deployments using Calico, Illumio recommends setting the Calico
ChainInsertMode to Append and set Illumio Core as Primary Firewall
value to Yes. If the Kubernetes cluster requires Calico Insert mode, then
set Illumio Core as Primary Firewall value to No.

c. Click OK.
6. Click Save.

Illumio Core for Kubernetes

85

7. Provision the changes.

Be sure to provision the saved changes or else firewall coexistence will not take effect.

The following example is of a firewall coexistence scope for a Kubernetes or OpenShift clus-
ter which has the following labels:

• Role: All
• Application: Kube-System
• Environment: Development
• Location: Cloud

The firewall coexistence scope in the example uses the 'All Roles' objects to cover future
Pods spun up in the kube-system namespace that may require additional iptables rules to
forward packets.

Upgrade and Uninstallation
Follow the steps and sequence described in this section to upgrade or uninstall Illumio Core
for Kubernetes components. This section also describes the procedure for migrating from a
deployment of C-VEN version 21.5.15 or earlier (which did not use Helm Charts) to a current
Helm Chart deployment.

This chapter also describes how to upgrade a non-CLAS deployment to a CLAS-enabled one
(which is the default mode starting in version 5.0.0 of Illumio Core for Kubernetes).

IMPORTANT
Use the proper upgrade and uninstallation procedures according to the meth-
od that was first used to deploy the product. For deployments made with
a Helm Chart (typically with Illumio Core for Kubernetes 3.0.0 or later), fol-
low the steps in Upgrade and Uninstall Helm Chart Deployments [89]. For
deployments made without using a Helm Chart (for installations of C-VEN
21.5.15 or earlier), follow the steps in Upgrade and Uninstall Non-Helm Chart
Deployments. [90]

Migrate from Previous C-VEN Versions (21.5.15 or Earlier)

This section describes the steps to migrate a manually-deployed Illumio installation to a
Helm-managed deployment. Manually-deployed (or, non-Helm deployments) were used to

Illumio Core for Kubernetes

86

configure and deploy C-VEN versions 21.5.15 and earlier, and Kubelink versions earlier than
3.0.

To upgrade an existing Helm installation to a newer version, follow standard Helm practice
with helm upgrade command.

Follow these general steps to migrate from a manually-deployed Illumio Core for Kubernetes
to a Helm Chart deployment:

1. Annotate and label resources.
2. Delete C-VEN DaemonSet.
3. Install Helm and the Helm Chart.

Annotate and Label Resources
From Helm version 3.0.0 on, Helm supports adopting already-deployed resources with the
correct name, annotations, and labels.

Required annotations and labels are:

annotations:
 meta.helm.sh/release-name: illumio
 meta.helm.sh/release-namespace: illumio-system
labels:
 app.kubernetes.io/managed-by: Helm

To annotate and label all Illumio resources, use the commands below (provided the names of
resources match your deployment). Note the --overwrite flag which replaces any existing
ownership annotations that might be already assigned.

kubectl -n illumio-system annotate secret illumio-ven-config meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate secret illumio-ven-config meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label secret illumio-ven-config app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate secret illumio-kubelink-config
meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate secret illumio-kubelink-config
meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label secret illumio-kubelink-config
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate serviceaccount illumio-ven meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate serviceaccount illumio-ven meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label serviceaccount illumio-ven
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate clusterrole illumio-kubelink

Illumio Core for Kubernetes

87

meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate clusterrole illumio-kubelink
meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label clusterrole illumio-kubelink
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate clusterrolebinding illumio-ven
meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate clusterrolebinding illumio-ven
meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label clusterrolebinding illumio-ven
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate clusterrole illumio-ven meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate clusterrole illumio-ven meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label clusterrole illumio-ven app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate serviceaccount illumio-kubelink
meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate serviceaccount illumio-kubelink
meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label serviceaccount illumio-kubelink
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate deployment illumio-kubelink meta.helm.sh/
release-name=illumio --overwrite
kubectl -n illumio-system annotate deployment illumio-kubelink meta.helm.sh/
release-namespace=illumio-system --overwrite
kubectl -n illumio-system label deployment illumio-kubelink
app.kubernetes.io/
managed-by=Helm --overwrite
kubectl -n illumio-system annotate clusterrolebinding
illumio-kubelink meta.helm.sh/release-name=illumio --overwrite
kubectl -n illumio-system annotate clusterrolebinding
illumio-kubelink meta.helm.sh/release-namespace=illumio-system --overwrite
kubectl -n illumio-system label clusterrolebinding
illumio-kubelink app.kubernetes.io/managed-by=Helm --overwrite

The output should look similar to this:

...
clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink annotated
clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink annotated
clusterrolebinding.rbac.authorization.k8s.io/illumio-kubelink labeled

Illumio Core for Kubernetes

88

Delete C-VEN DaemonSet
The next step is removing the C-VEN DaemonSet. Save any custom labels and validations
included in the DaemonSet and reapply them later.

kubectl delete daemonset illumio-ven -n illumio-system

Install Helm
The last remaining step is installing Helm and the Helm Chart for Illumio Core for Kuber-
netes. Follow the steps in Deploy with Helm Chart [39]. Filling in the fields in illumio-val-
ues.yaml is still mandatory.

Upgrade and Uninstall Helm Chart Deployments

Deployments of Illumio Core for Kubernetes 3.0.0 or later are performed with Helm Charts.
Upgrades and uninstallations are also performed with Helm commands.

Upgrade Helm Chart Deployments
To upgrade an existing installation to a newer version after it had been initially deployed with
a Helm Chart, follow standard Helm practice with the helm upgrade command.

For example, if you install the Helm Chart for Core for Kubernetes 4.2.0 initially with this
command:

helm install illumio -f values.yaml oci://quay.io/illumio/illumio
--version 4.2.0
--namespace illumio-system

Then use the following command to upgrade to version 4.3.0:

helm upgrade illumio -f values.yaml oci://quay.io/illumio/illumio
--version 4.3.0

Use the same values.yaml file for the upgrade that was used for the original install com-
mand.

IMPORTANT
Be sure to explicitly specify the version to upgrade to with the --version
<ver#> option (for example, --version 4.3.0), after confirming that the
product version you want to install is supported with your PCE version. Verify
which PCE versions support the Illumio Core for Kubernetes version you want
to deploy at the Kubernetes Operator OS Support and Dependencies page on
the Illumio Support Portal.

Uninstall Helm Chart Deployments
To completely uninstall an existing installation that had been initially deployed with a Helm
Chart:

Illumio Core for Kubernetes

89

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

$ helm uninstall illumio --namespace illumio-system

$ kubectl delete namespace illumio-system

The uninstallation process also unpairs the C-VENs from the PCE.

Uninstalling the Helm Chart release takes around two minutes to complete.

Upgrade and Uninstall Non-Helm Chart Deployments

This section describes how deployments that were not installed with Helm can be upgraded
or uninstalled.

Upgrade Illumio Components
Illumio Core for Kubernetes and OpenShift is a flexible and modular solution that can be
upgraded piece by piece.

For minor upgrades, Kubelink can be upgraded independently from the C-VEN and vice
versa unless explicitly mentioned in the release notes.

For major upgrades, including PCE, Kubelink, and C-VEN, Illumio recommends the following
process:

• Upgrade the PCE to the new desired version.
• Review the compatibility matrix between PCE, Kubelink, and C-VEN on the Illumio support

website.
• Upgrade Kubelink.
• Upgrade C-VEN.

Upgrade Kubelink
The supported process to upgrade Kubelink is as follows:

1. Upload the new image to your private container registry.
2. Change the manifest file to point to the latest Kubelink image in the registry. You do not

need to change the previously created secret for Kubelink.
3. Apply this new manifest file to the cluster. illumio-kubelink follows the default update

behavior of Kubernetes. For more information, see Kubernetes Documentation.

You can verify that the upgrade was successful in the PCE UI on the Container Clusters >
Summary page and checking for the new Kubelink version.

Upgrade C-VEN
The supported process to upgrade C-VENs is as follows:

1. Upload the new image to your private container registry.
2. Change the manifest file to point to the latest C-VEN image in the registry. You do not

need to change the previously created secret for C-VEN.

Illumio Core for Kubernetes

90

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#updating-a-deployment

3. Apply this new manifest file to the cluster. illumio-ven daemonset follows the default
rolling update behavior of Kubernetes. For more information, see Kubernetes Documenta-
tion.

You can verify that the upgrade was successful in the PCE UI on the Container Clusters >
Workloads page and clicking on any workload and checking for the new C-VEN version.

Uninstall Illumio from Your Cluster
To uninstall the Illumio components, you need to contact Illumio Professional Services to
unpair the C-VENs and then delete the Illumio resources from your cluster.

Unpair C-VENs

IMPORTANT
Contact Illumio Professional Services to unpair the C-VENs in your Kubernetes
or OpenShift clusters.

Deleting C-VENs or DaemonSet will not properly unpair them from the PCE and can cause
the following issues:

• Workloads will go offline in the PCE UI after 5 minutes (defined by the default Offline
Timers configured in the PCE).

• Workloads will be left in the PCE UI as offline with the button to unpair them grayed out
(this action is not supported by Illumio).

• Firewall rules configured on the Host and Pods namespaces will remain untouched and
active.

The current way to properly delete these workloads created in the PCE UI by C-VENs is by
deleting the entire cluster in the PCE UI.

IMPORTANT
Unpairing an individual C-VEN is not supported. It has to be done at the
cluster level (through the DaemonSet), because the cluster is considered as a
single entity from a security point of view.

If a node unjoins the cluster for any reason or due to the kubectl delete node
<node_name> command, the PCE automatically unpairs the C-VEN and deletes the workload
and Container workloads associated with the C-VEN that was running on the deleted node.

Delete Illumio Resources
To delete the existing Illumio resources created in your Kubernetes or OpenShift cluster,
follow these steps:

Illumio Core for Kubernetes

91

https://kubernetes.io/docs/tasks/manage-daemon/update-daemon-set/
https://kubernetes.io/docs/tasks/manage-daemon/update-daemon-set/

Delete C-VEN Resources

1. Contact Illumio Professional Services to unpair the C-VENs and clean up existing iptables
rules created by Illumio.

2. Check the Workloads and Container Workloads tabs under Infrastructure > Container
Clusters > YourClusterName and validate that your nodes and Pods are no longer visible.

3. Delete the resources created during the C-VEN installation by using the following com-
mand:

kubectl delete -f illumio-ven-kubernetes.yml
kubectl delete -f illumio-ven-secret.yml

oc delete -f illumio-ven-openshift.yml
oc delete -f illumio-ven-secret.yml

Delete Kubelink Resources

1. Delete the resources created during the Kubelink installation.
2. Delete Kubelink resources from Kubernetes:

kubectl delete -f illumio-kubelink-kubernetes.yml
kubectl delete -f illumio-kubelink-secret.yml

3. Delete Kubelink resources from OpenShift:

oc delete -f illumio-kubelink-openshift.yml
oc delete -f illumio-kubelink-secret.yml

4. Check the Summary tab under Infrastructure > Container Clusters > YourClusterName
and validate that your cluster is "Out of Sync". It takes approximately 10 minutes for the
cluster Status to change from "In Sync" to "Out-of-Sync".

5. Finally, delete the container cluster from the PCE UI and verify that there are no resources
left in your cluster such as, ConfigMap, Secrets, and others.

Delete Illumio Namespace

• To delete the Illumio namespace in Kubernetes, use the following command:

kubectl delete ns illumio-system

• To delete the Illumio namespace in OpenShift, use the following command:

oc delete project illumio-system

Upgrade to CLAS Architecture

A Cluster Local Actor Store (CLAS) mode is introduced into the architecture of Illumio Core
for Kubernetes 5.0.0.

Illumio Core for Kubernetes

92

IMPORTANT
To use CLAS, your PCE must be upgraded to Core 23.5.10 or later.

The CLAS architecture brings two major changes to the typical Illumio Core policy model:

• The definition of a workload is fundamentally changed. In a legacy, non-CLAS environment,
a container workload is a Pod. In CLAS, a workload is now the Kubernetes Workload
resource (such as Deployment, StatefulSet, ReplicaSet, DaemonSet, and so on), which
typically includes multiple Pods that can change in amount during the lifetime of the
workload. As such, CLAS workloads are called Kubernetes Workloads, to distinguish them
from non-CLAS Container Workloads.

• ClusterIP services change from Virtual Services to workloads. NodePort and LoadBalancer
services remain as Virtual Services in the PCE. The ClusterIP part of a NodePort or LoadBa-
lancer service also exists as a Kubernetes Workload and is linked with the Virtual Service.

Illumio recommends writing a policy using labels. In addition to being impractical, it is not
even possible to write a policy for individual Pods. It was (and still is) possible to use Virtual
Services in the policy explicitly in rule writing, but Illumio nevertheless recommends using
labels.

IMPORTANT
The CLAS architecture is supported only in Illumio Core for Kubernetes ver-
sions 5.0.0 and later

Pre-upgrade Policy Check
All policies for your Kubernetes environments must be expressed using labels. In the rare
case that policies are using Virtual Service objects, those policies must be changed to label-
based policies.

ClusterIP Services as Kubernetes Workloads
ClusterIP services are modeled as workloads in the CLAS environment. If you had a policy
written with "Virtual Services Only," that policy will not apply to Kubernetes Workloads
(including ClusterIP Services) after the upgrade to CLAS. All rules that apply to ClusterIP
Services must be changed to "Use Workloads" before upgrading to CLAS, which needs Des-
tination Services to be specified. This setting also causes ports to be populated from Virtual
Services to the rule. So at least one port number must be filled in when writing this rule.

To keep the old functionality of PCE synchronizing the ports of ClusterIP Service, the CLAS
now performs this operation. When the rule arrives at Kubelink/CLAS, ports will be replaced
by the current ports of the ClusterIP Services. The port replacement includes all ports from
the Service. If the Service has two ports, it is not possible to include one and not include the
other.

Illumio Core for Kubernetes

93

Because Services are now Kubernetes Workloads, the "All Workloads" flag in a rule will
include all Services. Do not use "All Workloads" as a Destination in a rule. Use a more specific
label instead that targets the Service.

All rules that include a label of at least one ClusterIP service will have specified ports internal-
ly replaced. However - this is not reflected in PCE UI, where the rule still displays ports.

Upgrade Strategy
Illumio Core for Kubernetes 5.x is backward-compatible and supports both CLAS and legacy
non-CLAS mode operation.

This is controlled by the clusterMode parameter specified in the Helm Chart installation yaml
file. The default value is legacy, meaning that after the upgrade, the software operates in the
legacy, non-CLAS mode.

The PCE supporting Illumio Core for Kubernetes 5.0.0 and later (PCE version 23.5.0+A1 and
later) also supports both CLAS and non-CLAS modes of operation. Illumio recommends that
after the software upgrade, the migration to CLAS is performed one cluster at a time.

The CLAS implementation uses the configuration parameter clusterMode set to clas or
legacy to turn on (or off) CLAS mode in the cluster, respectively, when installing. When up-
grading an existing non-CLAS cluster to CLAS, set clusterMode, to migrateLegacyToClas.
When reverting (or downgrading) CLAS to non-CLAS, set clusterMode to migrateClasTo-
Legacy.

Upgrade Steps (on Each Kubernetes Cluster)
Be sure to perform all steps in this procedure on each existing Kubernetes cluster that you
want to upgrade to CLAS mode.

1. Prepare the values.yaml file with all required parameters. Refer to Deploy with Helm
Chart [39].

2. Upgrade Illumio Core for Kubernetes to version 5.1.0 or later. Refer to Upgrade and Unin-
stall Helm Chart Deployments [89].

3. Verify the upgrade was successful.
4. Perform a pre-upgrade policy check (see Pre-upgrade Policy Check [93] above).
5. Set the "illumio-system" namespace into Visibility Only enforcement mode.
6. Consider setting all cluster nodes into Visibility Only enforcement mode. This step com-

promises security and will open traffic to/from your protected applications. On the other
hand, any policy errors will not result in an application outage.

7. Migrate the cluster to CLAS mode:
a. Add clusterMode: migrateLegacyToClas parameter-value pair to your val-

ues.yaml.
b. Perform helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

Illumio Core for Kubernetes

94

IMPORTANT
Be sure to explicitly specify the version to upgrade to with the --ver-
sion <ver#> option (for example, --version 5.1.0), after confirming
that the product version you want to upgrade to is supported with your
PCE version. Verify which PCE versions support the Illumio Core for
Kubernetes version you want to deploy at the Kubernetes Operator OS
Support and Dependencies page on the Illumio Support Portal.

8. Refresh the Container Cluster page so that the Kubernetes Workloads tab now appears
along with Container Workloads tab

9. Check that all C-VEN pods and the Kubelink pod restarted.
10
.

This cluster is now running in migration mode, Container Workloads are still present, and
new Kubernetes Workloads (CLAS-enabled) are populated.

11. Check if policy sync status of all Kubernetes Workloads and Peer Workloads are "Active."
Some Container Workloads might be in Active state, while others in Syncing state -- this
is expected. Check if traffic still works. If something goes wrong, revert the cluster to
non-CLAS mode with the following procedure, otherwise go to the next Step:
a. Specify clusterMode: migrateClasToLegacy parameter-value pair in your val-

ues.yaml.
b. Perform helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

c. Refresh the Container Cluster page so the Container Workloads tab appears along
with the Kubernetes Workloads tab

d. Wait until Container Workloads and peers are Active, and traffic is working as expec-
ted.

e. Change the clusterMode parameter to legacy in values.yaml -- or delete the varia-
ble (because the default parameter value is legacy).

f. Perform the helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

g. Verify that Kubernetes Workloads were deleted, that Container Workloads are in a
Synced state, and that traffic is working as expected.

12. Set the cluster to CLAS mode:
a. Change clusterMode: clas in values.yaml.
b. Perform the helm upgrade command:

helm upgrade <nameofyourhelmdeployment> -n illumio-system -f
<yourvalues.yaml> oci://quay.io/illumio/illumio --version 5.1.0

13. Check that the Kubelink Pod restarted.
14. The cluster is now running in the CLAS mode. All Container Workloads from this cluster

will no longer be visible on the PCE. Instead, the PCE will display only a list of Kubernetes
Workloads (Deployments, etc.).

15. Set all nodes into original enforcement mode if those were previously changed to visibility
only.

Illumio Core for Kubernetes

95

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html
https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

IMPORTANT
Before using your CLAS cluster, make sure you write mandatory infrastructure
rules to enable proper operation. See Rules and Traffic Considerations with
CLAS [69] for details on these mandatory rules.

Prepare OpenShift for Illumio Core
If the prerequisite steps are not performed prior to VEN and Kubelink installation, container-
ized environments and Kubelink may be disrupted.

Unique Machine ID

Some of the functionalities and services provided by the Illumio VEN and Kubelink depend
on the Linux machine-id of each OpenShift cluster node. Each machine-id must be unique in
order to take advantage of the functionalities. By default, the Linux OS generates a random
machine-id to give each Linux host uniqueness. However, there are cases when machine-id's
can be duplicated across machines. This is common across deployments that clone machines
from a golden image, for example, spinning up virtual machines from VMware templates or
creating Amazon EC2 instances from an AMI.

To verify machine-ids and resolve any duplicate machine-ids across nodes:

1. ssh into every node of the OpenShift cluster (master, infra, and worker) as the root user.
2. Check the contents of the /etc/machine-id file. The output is a string of letters and

numbers.
3. If the machine-id string is unique for each node, then the environment is ok. If the ma-

chine-id is duplicated across any of the nodes, you must generate a machine-id for each
node which has the same machine-id.

You can run the following command to view the output of machine-id:

cat /etc/machine-id

If the machine-id is duplicated, then run the command listed below to generate a new ma-
chine-id. You will also need to restart the atomic-OpenShift-node service on each node. If
the machine-id is not duplicated, go to the next section.

rm -rf /etc/machine-id; touch /etc/machine-id; systemd-machine-id-setup;
service atomic-OpenShift-node restart

NOTE
Check the machine-id again to verify that each machine has a unique ma-
chine-id.

Illumio Core for Kubernetes

96

Create Labels

For details on creating labels, see "Labels and Label Groups" in the Security Policy Guide.

The labels listed below are used in examples throughout this document. You are not required
to use the same labels.

Name Label type

Openshift Infrastructure Application

Development Environment

HQ Location

Kubelink Role

Master Role

Infra Role

Compute Role

Create Pairing Profiles

After creating labels for your OpenShift cluster nodes, you can use those labels to create
pairing profiles. You do not need to create pairing profiles for container workloads.

For ease of configuration and management, consider applying the same Application, Envi-
ronment, and Location labels across all nodes of the same OpenShift cluster. The screenshot
below show examples of three pairing profiles for one OpenShift Enterprise cluster. The
pairing profiles are used for pairing either master, compute, or infrastructure nodes of an
OpenShift cluster.

TIP
It is recommended that all pairing profiles for OpenShift nodes not use En-
forced policy state.

Move into Enforced state after you have completed all other configuration
steps in this guide (setup Kubelink, discover services, and write rules).

Illumio Core for Kubernetes

97

Deploy Kubelink

Download the required resources such as Kubelink docker image, secret file, and deployment
file from the Illumio Support portal (login required).

Prerequisites

• Kubelink deployment file provided by Illumio. For OpenShift deployments, the file name is
illumio-kubelink-openshift.yml.

• Kubelink secret file provided by Illumio. This file name is illumio-kubelink-secret.yml.
• Illumio's Kubelink docker image uploaded to your private docker registry.

Create Container Cluster

1. Log into the PCE as a user with Global Organization Owner privileges.
2. From the PCE web console menu, choose Infrastructure > Container Clusters.
3. Click Add.

a. Enter a Name.
b. Save the Container Cluster.

4. You will see a summary page of the new Container Cluster. Copy the values of the Cluster
ID and Cluster Token found under the Cluster Pairing Token section.

5. Once you have the values, you can exit the Container Cluster page.

Illumio Core for Kubernetes

98

https://support.illumio.com/software/index.html

Configure Container Workload Profile
When configuring a new Container Cluster, it is recommended to set the default settings
shared by all the Container Workload Profiles. Illumio provides a Container Workload Profile
template that can be used for that purpose. By defining the default Policy State and mini-
mum set of labels common to all namespaces in the cluster, you will save time later on when
new namespaces are discovered by Kubelink. Each new profile created will inherit what was
defined in the template.

SSL Verification
Illumio does not provide a simple way to redefine all at once the labels associated to each
profile all at once in this release, so it is strongly recommended to use this template to define
the default values for all profiles part of the same cluster.

To define the default parameters for all profiles using a template, under Container Workload
Profiles, click on Edit default settings and fill in the different fields. An example is shown
below:

Illumio Core for Kubernetes

99

Once you validate, you should see something like the following:

Configure Kubelink Secret
This step assumes that you have created a Container Cluster object in the PCE. You will need
the Cluster ID and Cluster Token values for the Kubelink secret.

1. ssh to the master node.
2. Open the kubelink secret YAML file and modify the stringData.

a. ilo_server = the PCE URL and port. Example: https://mypce.example.com:8443
b. ilo_cluster_uuid = Cluster ID value from previous step. Example: dc1ecbf9-

f481-44a7-a4b7-fb028b1b4ece

c. ilo_cluster_token = Cluster Token from previous step. Example:
1_d37ea3dcd34ae8ae2a78fb33f4e159cc4003e95cc4babe0d992062127a21dab4

d. ignore_cert = SSL verification. The value is boolean and is recommended to be set to
false so that Kubelink requires PCE certificate verification. Example: 'false'

e. log_level = Log level where '0' for debug, '1' for info, '2' for warn, or '3' for error.
Example: '1'

SSL Verification

Illumio Core for Kubernetes

100

Illumio does not recommend turning off SSL verification (ignore_cert: 'true'); however,
this is an option for deployments in which the PCE uses a self-signed certificate.
Contents of a modified illumio-kubelink-secret.yml file are shown below.

#
Copyright 2013-2020 Illumio, Inc. All Rights Reserved.
#

apiVersion: v2
kind: Secret
metadata:
 name: illumio-kubelink-config
 namespace: kube-system
type: Opaque
stringData:
 ilo_server: https://mypce.example.com:8443 # Example: https://
mypce.example.com:8443
 ilo_cluster_uuid: dc1ecbf9-f481-44a7-a4b7-fb028b1b4ece # Example:
cc4997c1-408b-4f1d-a72b-91495c24c6a0
 ilo_cluster_token:
1_d37ea3dcd34ae8ae2a78fb33f4e159cc4003e95cc4babe0d992062127a21dab4 #
Example: 170b8aa3dd6d8aa3c284e9ea016e8653f7b51cb4b0431d8cbdba11508763f3a3
 ignore_cert: 'false' # Set to 'true' to ignore the PCE certificate
 log_level: '1' # Default log level is info

NOTE
If you are going to use a private PKI to sign the PCE certificate, see Imple-
ment Kubelink with a Private PKI [103] before deploying Kubelink.

3. Save the changes.
4. Create the Kubelink secret using the file.

oc create -f illumio-kubelink-secret.yml

Deploy Kubelink
Modify the Kubelink configuration file to point to the correct docker image. The example
in this document has kubelink:<version#> uploaded to registry.example.com:443/il-
lumio, which means the image link in this example is registry.example.com:443/illu-
mio/kubelink:<version#>

1. Edit the Kubelink configuration YAML file. For OpenShift clusters, the file name will be
illumio-kubelink-openshift.yml.
• Inside the YAML you will find the spec: > template: > spec: > containers:

section. Paste the image link in the image: attribute. The string should be wrapped in
single quotes as shown in the example below.

2. Save the changes.
Below is a snippet from an example of the Kubelink configuration for OpenShift to illus-
trate the image location.

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: illumio-kubelink

Illumio Core for Kubernetes

101

 namespace: kube-system
spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 labels:
 app: illumio-kubelink
 spec:
nodeSelector:
node-role.kubernetes.io/master: ""
 serviceAccountName: illumio-kubelink
 tolerations:
 - key: node-role.kubernetes.io/master
 effect: NoSchedule
 containers:
 - name: illumio-kubelink
 image: 'registry.example.com:443/illumio/illumio-
kubelink:<version#>'
 imagePullPolicy: Always
 env:
 - name: ILO_SERVER
 valueFrom:
 secretKeyRef:
 name: illumio-kubelink-config
 key: ilo_server

3. (Optional) If you're using a private PKI to sign the PCE certificate, make sure you add the
references to the root CA certificate that signed the PCE certificate. For more details, see
Implement Kubelink with a Private PKI [103].

4. To deploy Kubelink, run the following command:

oc apply -f illumio-kubelink-openshift.yml

After Kubelink is successfully installed, you can check the cluster information by using the
Illumio PCE web console. From the main menu, navigate to Infrastructure > Container Clus-
ters.

Below is an example of a healthy container cluster state reported by Kubelink.

Illumio Core for Kubernetes

102

Implement Kubelink with a Private PKI

This section describes how to implement Kubelink with a PCE using a certificate signed by
a private PKI. It describes how to configure Kubelink to accept the certificate from the PCE
signed by a private root or intermediate Certificate Authority (CA) and ensure that Kubelink
can communicate in a secure way with the PCE.

NOTE
The steps described below are not applicable for a PCE using a self-signed
certificate.

Prerequisites

• Access to the root CA to download the root CA certificate.
• Access to your Kubernetes cluster and can run kubectl commands.
• Correct privileges in your Kubernetes cluster to create resources like a configmaps, secrets,

and pods.
• Access to the PCE UI as a Global Organization Owner.

Illumio Core for Kubernetes

103

Download the Root CA Certificate
Before you begin, ensure that you have access to the root CA certificate. The root CA certifi-
cate is a file that can be exported from the root CA without compromising the security of the
company. It is usually made available to external entities to ensure a proper SSL handshake
between a server and its clients.

You can download the root CA cert in the CRT format on your local machine. Below is an
example of a root CA certificate:

$ cat root.democa.illumio-demo.com.crt
-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---
wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

You can also get the content of your root CA certificate in a readable output format by
running the following command:

$ openssl x509 -text -noout -in ./root.democa.illumio-demo.com.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 fc:34:35:f3:c0:8a:f2:56:e1:89:8a:67:8f:7d:78:76:47:dd:2f
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Validity
 Not Before: Jan 20 00:05:36 2020 GMT
 Not After : Jan 17 00:05:36 2030 GMT
 Subject: C=US, ST=California, L=Sunnyvale, O=Illumio, OU=Technical
Marketing, CN=Illumio Demo Root CA 1/emailAddress=tme-team@illumio.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 Public-Key: (4096 bit)
 Modulus:
 00:c0:e5:48:7d:97:f8:5b:8c:ef:ac:16:a8:8c:aa:
 68:b8:48:af:28:cd:17:8f:02:c8:82:e9:69:62:e2:
 89:2b:be:bd:34:fc:e3:4d:3f:86:5e:d7:e6:89:34:
 71:60:e6:54:61:ac:0f:26:1c:99:6f:80:89:3f:36:
 b3:ad:78:d1:6c:3f:d7:23:1e:ea:51:14:48:74:c3:
 e8:6e:a2:79:b1:60:4c:65:14:2a:f1:a0:97:6c:97:
 50:43:67:07:b7:51:5d:2c:12:49:81:dc:01:c9:d1:
 57:48:32:2e:87:a8:d2:c0:b9:f8:43:b2:58:10:af:
 54:59:09:05:cb:3e:f0:d7:ef:70:cc:fc:53:48:ee:
 a4:a4:61:f1:d7:5b:7c:a9:a8:92:dc:77:74:f4:4a:
 c0:4a:90:71:0f:6d:9e:e7:4f:11:ab:a5:3d:cd:4b:
 8b:79:fe:82:1b:16:27:94:8e:35:37:db:dd:b8:fe:
 fa:6d:d9:be:57:f3:ca:f3:56:aa:be:c8:57:a1:a8:
 c9:83:dd:5a:96:5a:6b:32:2d:5e:ae:da:fc:85:76:
 bb:77:d5:c2:53:f3:5b:61:74:e7:f3:3e:4e:ad:10:
 7d:4f:ff:90:69:7c:1c:41:2f:67:e4:13:5b:e6:3a:
 a3:2f:93:61:3b:07:56:59:5a:d9:bc:34:4d:b3:54:

Illumio Core for Kubernetes

104

 b5:c6:e5:0a:88:e9:62:7b:4b:85:d2:9e:4c:ee:0b:
 0d:f4:72:b1:1b:44:04:93:cf:cc:bb:18:31:3a:d4:
 83:4a:ff:15:42:2d:91:ca:d0:cb:36:d9:8d:62:c0:
 41:59:1a:93:c7:27:79:08:94:b2:a2:50:3c:57:27:
 33:af:f0:b6:92:44:49:c5:09:15:a7:43:2a:0f:a9:
 02:61:b3:66:4f:c3:de:d3:63:1e:08:b1:23:ea:69:
 90:db:e8:e9:1e:21:84:e0:56:e1:8e:a1:fa:3f:7a:
 08:0f:54:0a:82:41:08:6b:6e:bb:cf:d6:5b:80:c6:
 ea:0c:80:92:96:ab:95:5d:38:6d:4d:da:38:6b:42:
 ef:7c:88:58:83:88:6d:da:28:62:62:1f:e5:a7:0d:
 04:9f:0d:d9:52:39:46:ba:56:7c:1d:77:38:26:7c:
 86:69:58:4d:b0:47:3a:e2:be:ee:1a:fc:4c:de:67:
 f3:d5:fe:e6:27:a2:ef:26:86:19:5b:05:85:9c:4c:
 02:24:76:58:42:1a:f8:e0:e0:ed:78:f2:8f:c8:5a:
 20:a9:2d:0b:d4:01:fa:57:d4:6f:1c:0a:31:30:8c:
 32:7f:b0:01:1e:fe:94:96:03:ee:01:d7:f4:4a:83:
 f5:06:fa:60:43:15:05:9a:ca:88:59:5c:f5:13:09:
 82:69:7f
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92
 X509v3 Authority Key Identifier:

keyid:3D:3D:3D:61:E6:88:09:FE:34:0F:1D:5E:5E:52:72:71:C7:DE:15:92

 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 Signature Algorithm: sha256WithRSAEncryption
 28:24:86:91:a6:4a:88:e4:8d:6b:fc:67:2a:68:08:67:35:e5:
 a6:77:ff:07:4b:89:53:99:2e:6d:95:df:12:81:28:6a:8e:6f:
 5a:98:95:5b:4a:21:ae:f0:20:a4:4e:06:b2:4e:5a:67:c1:6a:
 06:f1:0f:c1:f7:7e:f2:e0:b3:9d:d8:54:26:6a:b2:1c:19:b8:
 b5:5c:c7:03:6b:f7:70:9e:72:85:c9:29:55:f9:f4:a4:f2:b4:
 3b:3d:ce:25:96:67:32:1e:8d:e2:00:22:55:4b:05:4f:ee:0e:
 67:ac:db:1b:61:da:5f:9c:10:1c:0c:05:66:c0:5b:5f:b9:95:
 59:a9:58:5b:e7:69:ac:b0:bd:b3:c2:a3:35:58:01:a4:ff:c0:
 8d:ac:1c:19:21:41:50:fb:8e:e0:f5:a9:ad:ec:de:cb:53:04:
 a9:d8:ac:76:8a:09:0d:7c:c6:1a:bc:06:74:bb:10:1c:aa:07:
 f6:cb:b2:1b:0c:0c:65:03:45:2b:51:d5:6e:a0:4d:91:ce:c5:
 ed:8d:a9:e7:f6:37:7d:ab:1b:a4:a2:a3:3b:76:17:5b:d9:3a:
 9c:c1:df:cc:cd:a0:b0:a9:5c:74:61:d7:a0:1d:04:67:68:ee:
 a6:7b:1e:41:a4:02:fc:65:9e:e3:c1:c2:57:b2:2e:b0:ff:a9:
 86:82:35:4d:29:b2:fe:74:2e:b8:37:5d:2b:e8:69:f2:80:29:
 19:f1:1e:7a:5d:e3:d2:51:50:46:30:54:7e:b8:ad:59:61:24:
 45:a8:5a:fe:19:ff:09:31:d0:50:8b:e2:15:c0:a2:f1:20:95:
 63:55:18:a7:a2:ad:16:25:c7:a3:d1:f2:e5:be:6d:c0:50:4b:
 15:ac:e0:10:5e:f3:7b:90:9c:75:1a:6b:e3:fb:39:88:e4:e6:
 9f:4c:85:60:67:e8:7d:2e:85:3d:87:ed:06:1d:13:0b:76:d7:
 97:a5:b8:05:76:67:d6:41:06:c5:c0:7a:bd:f4:c6:5b:b2:fd:
 23:6f:1f:57:2e:df:95:3f:26:a5:13:4d:6d:96:12:56:98:db:
 2e:7d:fd:56:f5:71:b7:19:2b:c9:de:2d:b9:c8:17:cc:20:de:
 7c:19:7a:aa:12:97:1c:80:b7:d3:67:d3:b7:a7:96:f0:c9:4d:

Illumio Core for Kubernetes

105

 f5:8b:0e:10:3b:b9:4e:09:90:5a:3b:51:c9:48:a2:ca:9f:db:
 72:44:87:59:db:49:fa:75:44:b5:f6:7f:c5:26:e1:01:ae:7b:
 6f:4a:75:d1:b5:b3:68:c0:31:48:f8:5c:06:c0:f1:b4:96:e8:
 38:e8:ad:44:3d:0a:8c:03:b6:2c:86:6a:f0:39:de:84:4b:2e:
 91:18:d1:45:65:d8:64:f5

Create a configmap in Kubernetes Cluster
After downloading the certificate locally on your machine, create a configmap in the Kuber-
netes cluster that will copy the root CA certificate on your local machine into the Kubernetes
cluster.

To create configmap, run the following command:

$ kubectl -n kube-system create configmap root-ca-config \
 --from-file=./certs/root.democa.illumio-demo.com.crt

The --from-file option points to the path where the root CA certificate is stored on your
local machine.

To verify that configmap was created correctly, run the following command:

$ kubectl -n kube-system create configmap root-ca-config \
> --from-file=./certs/root.democa.illumio-demo.com.crt
configmap/root-ca-config created
$
$ kubectl -n kube-system get configmap
NAME DATA AGE
calico-config 8 142d
cluster-info 4 142d
coredns 1 142d
coredns-autoscaler 1 142d
crn-info-ibmc 6 142d
extension-apiserver-authentication 6 142d
iaas-subnet-config 1 142d
ibm-cloud-cluster-ingress-info 2 142d
ibm-cloud-provider-data 1 142d
ibm-cloud-provider-ingress-cm 6 142d
ibm-master-proxy-config 1 142d
ibm-network-interfaces 1 142d
kube-dns 0 142d
kubernetes-dashboard-settings 1 44d
metrics-server-config 1 142d
node-local-dns 1 142d
root-ca-config 1 12s
subnet-config 1 142d
$
$ kubectl -n kube-system describe configmap root-ca-config
Name: root-ca-config
Namespace: kube-system
Labels: <none>
Annotations: <none>

Data

Illumio Core for Kubernetes

106

====
root.democa.illumio-demo.com.crt:

-----BEGIN CERTIFICATE-----
MIIGSzCCBDOgAwIBAgIUAPw0NfPAivJW4YmKZ499eHZH3S8wDQYJKoZIhvcNAQEL
---output suppressed---
wPG0lug46K1EPQqMA7YshmrwOd6ESy6RGNFFZdhk9Q==
-----END CERTIFICATE-----

Events: <none>
$

root-ca-config is the name used to designate configmap. You can modify it according to
your naming convention.

Modify Kubelink Manifest File to Use Certificate
After creating the configmap in your Kubernetes cluster, modify the YAML file that describes
Kubelink.

The current manifest file provided by Illumio does not include this modification, by default.
Open the .yml file and add the following code blocks:

• volumeMounts (under spec.template.spec.containers)
• volumes (under spec.template.spec)

 volumeMounts:
 - name: root-ca
 mountPath: /etc/pki/tls/ilo_certs/
 readOnly: false
 volumes:
 - name: root-ca
 configMap:
 name: root-ca-config

NOTE
In a YAML file, the indentation matters. Make sure that the indentation in the
file is as specified.

root-ca is the name used to designate the new volume mounted in the container. You can
modify it according to your naming convention.

After successfully modifying the manifest file, deploy Kubelink. For more details, see Deploy
Kubelink [98].

Illumio Core for Kubernetes

107

Install and Pair VENs for Containers

Using the pairing profiles mentioned earlier in this guide to install the VEN on each node of
your OpenShift cluster. For more information about installing VENs, see the VEN Installation
and Upgrade Guide.

Ensure that either of the two requirements below have been met prior to installing the VEN:

• Kubelink is deployed on the OpenShift cluster and in sync with the PCE
• Firewall coexistence is enabled

Below is a screenshot of Illumination with a master, compute, and infra node after deploying
and pairing the Illumio VEN.

Manage OpenShift Namespaces

After activating the VENs on the OpenShift cluster nodes and Kubelink is in sync with the
PCE, you can start managing the OpenShift projects (or namespaces). By default, all name-
spaces are unmanaged, which means Illumio Core does not apply any inbound or outbound
controls to the pods within those namespaces. Any pods or services within unmanaged
namespaces do not show up in the PCE inventory and Illumination.

After an Illumio Core PCE administrator changes an OpenShift namespace from unmanaged
to managed, the pods and services will show up in Illumination and inherit the labels of each

Illumio Core for Kubernetes

108

OpenShift namespace. The pods are represented in Illumio Core as Container Workloads. If
there are frontend services, then Illumio Core represents each one as a Virtual Service.

The following section describes how to change a namespace from unmanaged to managed.

Container Workload Profiles
Log into the PCE Web Console.

1. From the PCE web console menu, choose Infrastructure > Container Clusters.
2. Select the Container Cluster you want to manage.
3. Select the Container Workload Profiles tab.
4. You will see a list of all namespaces in the cluster. Select the namespace you want to

manage.
5. Click Edit:

a. Name is optional.
b. Select a Container Workload Policy State (anything other than unmanaged).
c. Assign Labels (optional).
d. Click Save.

When assigning labels, you can assign no labels, some labels, or all labels to the namespace.
If there is a label which is not assigned, then you can insert annotations into the deployment
configuration (or application configuration) to assign labels. If there is a conflict between
a label assigned via the Container Workload Profile and the annotations in the deployment
configuration, then the label from the Container Workload Profile will override the deploy-
ment configuration. Regardless of how you assign labels, it is not required for pods or serv-
ices to have all labels in order for the PCE to manage them. Below are instructions on how to
assign labels via the deployment configuration.

Using Annotations

For Deployment Configurations (Pods)

1. Open the OpenShift Web Console.
2. Navigate to the desired deployment/daemon set and click Edit YAML.

a. Inside the configuration YAML navigate to spec: > template: > metadata: > an-
notations:. If annotations: does not exist, then create an annotations: section
underneath metadata:.

b. The following Illumio label key fields which can go under the the annotations: sec-
tion.
• com.illumio.role:

• com.illumio.app:

• com.illumio.env:

• com.illumio.loc:

c. Fill in the appropriate labels.
d. Save the file and exit.

For Service Configurations (Services)

1. Open the OpenShift Web Console.
2. Navigate to the desired service and click Edit YAML.

a. Inside the configuration YAML navigate to metadata: > annotations:. If annota-
tions: does not exist, then create an annotations: section underneath metadata:.

Illumio Core for Kubernetes

109

b. The following Illumio label key fields which can go under the the annotations: sec-
tion.
• com.illumio.role:

• com.illumio.app:

• com.illumio.env:

• com.illumio.loc:

c. Fill in the appropriate labels.
d. Save the file and exit.

When using the annotations method, you may need to restart the pods or service after
saving the changes to the YAML for the labels to get assigned.

Below are examples of pods and namespaces which use label assignments via either Con-
tainer Workload Profiles or a mix of Container Workload Profiles plus annotation insertion.

This example changes unmanaged namespaces of Openshift infrastructure services (such as
apiserver, registry-console, etc.) into managed namespaces.

Things to notice about the example shown below:

• There are Openshift infrastructure services, or control plane pods, that exist within name-
spaces like default, kube-service-catalog, etc. They will inherit all four R-A-E-L labels,
including a Role label called "Control", from what has been configured in the Container
Workload Profile(s). The Application, Environment, and Location labels are the same as
the Openshift cluster nodes. This will minimize the complexity of writing policy which is
mentioned later in this guide.

• The Kubelink pod exists in the kube-system. This pod will get the same application, envi-
ronment, and location labels as the Openshift cluster nodes. The role label is left blank and
will be specified later using the annotations. These labels are assigned to the Kubelink pod
through the Container Workload Profile associated to the kube-system namespace.

• There is a namespace called openshift which contains two different deployments or a
two-tier shopping cart application (Web and Database). To achieve tier-to-tier segmenta-
tion across the application they would need different Role labels; therefore, a Role label will
be inserted into the annotations of each deployment configuration.

Illumio Core for Kubernetes

110

Snippet of illumio-kubelink deployment configuration file shown here. Role label of "Ku-
belink" inserted under spec: > template: > metadata: > annotations: section.

illumio-kubelink-openshift.yml

apiVersion: apps/v2
kind: Deployment
metadata:
 name: illumio-kubelink
 namespace: kube-system
spec:
 replicas: 1
 selector:
 matchLabels:
 app: illumio-kubelink
 template:
 metadata:
 labels:
 app: illumio-kubelink
 annotations:
 com.illumio.role: Kubelink

Snippet of the Shopping-Cart Web deployment configuration file shown here. Role label of
"Web" inserted under spec: > template: > metadata: > annotations: section.

shopping-cart-web.yml

spec:
 replicas: 3
 revisionHistoryLimit: 10
 selector:
 name: shopping-cart-web
 strategy:
 activeDeadlineSeconds: 21600
 resources: {}
 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 600
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 annotations:
 com.illumio.role: Web
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: null
 labels:

Snippet of the Shopping-Cart Database deployment configuration file shown here. Role label
of "Database" inserted under spec: > template: > metadata: > annotations: section.

shopping-cart-db.yml

Illumio Core for Kubernetes

111

spec:
 replicas: 2
 revisionHistoryLimit: 10
 selector:
 name: postgresql
 strategy:
 activeDeadlineSeconds: 21600
 recreateParams:
 timeoutSeconds: 600
 resources: {}
 type: Recreate
 template:
 metadata:
 annotations:
 com.illumio.role: Database
 openshift.io/generated-by: OpenShiftNewApp
 creationTimestamp: null
 labels:

Below is the final outcome of the label assignment from the example.

Daemonsets and Replicasets
The steps above apply only to services in OpenShift which are bound to deployment or
deploymentconfig. This is due to the Kubelink's dependency on pod hash templates which
daemonset and replicaset configurations do not have. If you discover pods derived from
daemonset or replicaset configurations and also discover services bound to those pods, then
Kubelink will not automatically bind the virtual service and service backends for the PCE. The
absence of this binding will create limitations with Illumio policies written against the virtual
service. To get around this limitation for daemonsets and replicasets follow the steps below.

1. Log into the CLI of any OpenShift node and generate a random uuid using the uuidgen
command.

2. Copy the output of the uuidgen command.
3. In the OpenShift web console, navigate to the configuration of the daemonset or replica-

set and edit the YAML file.

Illumio Core for Kubernetes

112

4. Find the spec: > template: > metadata: > labels: field in the YAML and create
field called pod-template-hash: under the labels: section.

5. Paste the new uuid to the value of the pod-template-hash: field.
6. Save the changes.

Repeat steps 1 through 6 for each daemonset or replicaset configuration.

See screenshots below for DaemonSet or ReplicaSet reference.

Troubleshooting
This section describes how to troubleshoot common issues when installing Illumio on Kuber-
netes or OpenShift deployments.

Kubelink Support Bundle

To assist the Illumio Support team with more details for troubleshooting, Kubelink now pro-
vides a support bundle that collects up to 2 GB of logs, metrics, and other data inside its pod.
Future versions will add the option to upload these support bundles to the PCE. Currently,
you must copy this support bundle by running the script /support_bundle.sh inside the

Illumio Core for Kubernetes

113

Kubelink pod. The script generates debug data, creates a gzipped tar archive using stdout as
output, and encodes this data using Base64.

Use the following command to generate and transfer the Kubelink support bundle from its
pod:

kubectl --namespace illumio-system exec deploy/illumio-kubelink -- /
support_bundle.sh | base64 --decode > /tmp/kubelink_support.tgz

Send the resulting compressed archive file to Illumio Support when requested.

Helm deployment (and uninstall) fails with C-VEN stuck in Container-
Creating state

During a deployment with Helm, if C-VEN pods do not start, and instead continually show a
status of ContainerCreating, check that you have the correct runtime set in your illumio-
values.yaml file. If, for example, the containerRuntime value is set to containerd but you
are now using a Docker runtime (parameter value of docker), then the C-VEN will become
stuck in a ContainerCreating state. If you later attempt to uninstall, the unpair action for
the C-VEN will also become stuck in a ContainerCreating state.

Confirm that a C-VEN exhibiting these persistent ContainerCreating symptoms is set to
the proper containerRuntime value in its illumio-values.yaml. Another clue when trou-
bleshooting is to check output of the describe command for the affected pod:

kubectl -n illumio-system describe pod/<your_pod_name>

Check the output under the Containers section, and, within that section, under the Mounts
section, to confirm the pod is attempting to mount to a location appropriate for your con-
tainer runtime.

kubectl -n illumio-system describe pod/illumio-ven-unpair-cwj2f
Name: illumio-ven-unpair-cwj2f
Namespace: illumio-system

[. . .]

Mounts:
 /var/run/containerd/containerd.sock from unixsocks (rw)

This problem is also shown under the Events section of this output, with a Warning event for
that mount location due to the mismatched container runtime values.

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
[. . .]
 Warning FailedMount 96s (x11 over 7m48s) kubelet MountVolume.SetUp
failed for volume “unixsocks” : hostPath type check failed: /var/run/
containerd/containerd.sock is not a socket file

Illumio Core for Kubernetes

114

Also check for any other mistakes in the illumio_values file. For example, use the following
kubectl get nodes -o wide commands to verify the proper OS node versions, Kuber-
netes/Openshift version, and the like:

root@Master:~# kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-
IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
master Ready control-plane 100d v1.29.9 10.2.85.63
<none> CentOS Linux 8 4.18.0-348.7.1.el8_5.x86_64 containerd://
1.6.32
node0 Ready <none> 100d v1.29.9 10.2.85.65
<none> CentOS Linux 8 4.18.0-348.7.1.el8_5.x86_64 containerd://
1.6.32
node1 Ready <none> 100d v1.29.9 10.2.85.66
<none> CentOS Linux 8 4.18.0-348.7.1.el8_5.x86_64 containerd://
1.6.32

root@Master:~# ssh root@ubuntu-1 kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP
EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
ubuntu-1 Ready control-plane,master 94d v1.30.5+k3s1 10.2.144.1
<none> Ubuntu 20.04.6 LTS 5.4.0-196-generic containerd://
1.7.21-k3s2
ubuntu-2 Ready <none> 94d v1.30.5+k3s1 10.2.197.128
<none> Ubuntu 20.04.6 LTS 5.4.0-196-generic containerd://
1.7.21-k3s2
ubuntu-3 Ready <none> 93d v1.30.5+k3s1 10.2.197.129
<none> Ubuntu 20.04.6 LTS 5.4.0-196-generic containerd://
1.7.21-k3s2

Failed Authentication with the Container Registry

In some cases, your Pods are in ImagePullBackOff state after the deployment:

$ kubectl -n kube-system get Pods
NAME READY STATUS RESTARTS AGE
coredns-58687784f9-h4pp2 1/1 Running 8
175d
coredns-58687784f9-znn9j 1/1 Running 9
175d
dns-autoscaler-79599df498-m55mg 1/1 Running 9
175d
illumio-kubelink-87fd8d9f6-nmh25 0/1 ImagePullBackOff 0 28s

In this case, check the description of your Pods using the following command:

$ kubectl -n kube-system describe Pods illumio-kubelink-87fd8d9f6-nmh25
Name: illumio-kubelink-87fd8d9f6-nmh25
Namespace: kube-system
Priority: 0
Node: node2/10.0.0.12
Start Time: Fri, 03 Apr 2020 21:05:07 +0000
Labels: app=illumio-kubelink

Illumio Core for Kubernetes

115

 Pod-template-hash=87fd8d9f6
Annotations: com.illumio.role: Kubelink
Status: Pending
IP: 10.10.65.55
IPs:
 IP: 10.10.65.55
Controlled By: ReplicaSet/illumio-kubelink-87fd8d9f6
Containers:
 illumio-kubelink:
 Container ID:
 Image: registry.poc.segmentationpov.com/illumio-
kubelink:2.0.x.xxxxxx
 Image ID:
 Port: <none>
 Host Port: <none>
 State: Waiting
 Reason: ImagePullBackOff
 Ready: False
 Restart Count: 0
 Environment:
 ILO_SERVER: <set to the key 'ilo_server' in secret 'illumio-
kubelink-config'> Optional: false
 ILO_CLUSTER_UUID: <set to the key 'ilo_cluster_uuid' in secret
'illumio-kubelink-config'> Optional: false
 ILO_CLUSTER_TOKEN: <set to the key 'ilo_cluster_token' in secret
'illumio-kubelink-config'> Optional: false
 CLUSTER_TYPE: Kubernetes
 IGNORE_CERT: <set to the key 'ignore_cert' in secret 'illumio-
kubelink-config'> Optional: true
 DEBUG_LEVEL: <set to the key 'log_level' in secret 'illumio-
kubelink-config'> Optional: true
 Mounts:
 /etc/pki/tls/ilo_certs/ from root-ca (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from illumio-kubelink-
token-7mvgk (ro)
Conditions:
 Type Status
 Initialized True
 Ready False
 ContainersReady False
 PodScheduled True
Volumes:
 root-ca:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: root-ca-config
 Optional: false
 illumio-kubelink-token-7mvgk:
 Type: Secret (a volume populated by a Secret)
 SecretName: illumio-kubelink-token-7mvgk
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node-role.kubernetes.io/master:NoSchedule
 node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s

Illumio Core for Kubernetes

116

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler
Successfully assigned kube-system/illumio-kubelink-87fd8d9f6-nmh25 to node2
 Normal SandboxChanged 45s kubelet, node2 Pod
sandbox changed, it will be killed and re-created.
 Normal BackOff 14s (x4 over 45s) kubelet,
node2 Back-off pulling image "registry.poc.segmentationpov.com/illumio-
kubelink:2.0.x.xxxxxx"
 Warning Failed 14s (x4 over 45s) kubelet, node2 Error:
ImagePullBackOff
 Normal Pulling 1s (x3 over 46s) kubelet, node2 Pulling
image "registry.poc.segmentationpov.com/illumio-kubelink:2.0.x.xxxxxx"
 Warning Failed 1s (x3 over 46s) kubelet,
node2 Failed to pull image "registry.poc.segmentationpov.com/illumio-
kubelink:2.0.x.xxxxxx": rpc error: code = Unknown desc = Error response
from daemon: unauthorized: authentication required
 Warning Failed 1s (x3 over 46s) kubelet, node2 Error:
ErrImagePull

The messages at the end of the output above are self-explanatory that there is a problem
with the authentication against the container registry. Verify the credentials you entered in
the secret for your private container registry and reapply it after fixing the issue.

Kubelink Pod in CrashLoopBackOff State

In some cases, your Kubelink Pod is in CrashLoobBackOff state after the deployment:

$ kubectl -n kube-system get Pods
NAME READY STATUS RESTARTS
AGE
coredns-58687784f9-h4pp2 1/1 Running 8
174d
coredns-58687784f9-znn9j 1/1 Running 9
174d
dns-autoscaler-79599df498-m55mg 1/1 Running 9
174d
illumio-kubelink-8648c6fb68-mdh8p 0/1 CrashLoopBackOff 1
16s

In this case, check the logs of your Pods using the following command:

$ kubectl -n kube-system logs illumio-kubelink-8648c6fb68-mdh8p
I, [2020-04-03T01:46:33.587761 #19] INFO -- : Starting Kubelink for PCE
https://mypce.example.com:8443
I, [2020-04-03T01:46:33.587915 #19] INFO -- : Found 1 custom certs
I, [2020-04-03T01:46:33.594212 #19] INFO -- : Installed custom certs to
/etc/pki/tls/certs/ca-bundle.crt
I, [2020-04-03T01:46:33.619976 #19] INFO -- : Connecting to PCE
https://mypce.example.com:8443
E, [2020-04-03T01:46:33.651410 #19] ERROR -- : Received a non retriable
error
401

Illumio Core for Kubernetes

117

/illumio/kubelink.rb:163:in `update_pce_resource': HTTP status code 401
uri:
https://mypce.example.com:8443/api/v2/orgs/10/container_clusters/
42083a4d-dd92-49e6-b495-6f84a940073c/put_from_cluster, request_id:
21bdfc05-7b02-442d-a778-e6f2da2a462b response: request_body:
{"kubelink_version":"2.0.x.xxxxxx","errors":[],"manager_type":"Kubernetes
v1.16.0"} (Illumio::PCEHttpException)
 from /illumio/kubelink.rb:113:in `initialize'
 from /illumio/main.rb:39:in `new'
 from /illumio/main.rb:39:in `block in main'
 from /external/lib/ruby/gems/2.4.0/gems/em-synchrony-1.0.6/
 lib/em-synchrony.rb:39:in `block (2 levels) in synchrony'

In the example above, the request is rejected by the PCE because of a wrong identifier.
Open your secret file for Kubelink, verify your cluster UUID and token, and make sure you
copy-pasted the same string provided by the PCE during cluster creation.

Container Cluster in Error

In some cases, the container cluster page displays an error indicating that duplicate machine
IDs were detected and functionality will be limited. See the screenshot below.

To resolve this error, follow the steps in the section below. After following those steps, restart
the C-VEN Pod on each of the affected Kubernetes cluster node.

Verify Machine IDs on All Nodes
To verify machine-ids and resolve any duplicate IDs across nodes:

1. Check the machineID of all your cluster nodes with the following command:

kubectl get node -o yaml | grep machineID

$ kubectl get node -o yaml | grep machineID
 machineID: ec2eefcfc1bdfa9d38218812405a27d9

Illumio Core for Kubernetes

118

 machineID: ec2bcf3d167630bc587132ee83c9a7ad
 machineID: ec2bf11109b243671147b53abe1fcfc0

2. As an alternative, you can also to check content of the /etc/machine-id file on all cluster
nodes. The output should be a single newline-terminated, hexadecimal, 32-character, and
lowercase ID.

3. If the machine-id string is unique for each node, then the environment is OK. If the ma-
chine-id is duplicated across any of the nodes, then you must generate a machine-id for
each node which has the same machine-id.

4. Running the following command displays the output of the machine-id:

cat /etc/machine-id

root@k8s-c2-node1:~# cat /etc/machine-id
2581d13362cd4220b20020ff728efff8

Generate a New Machine ID
If the machineID is duplicated on some or all of the Kubernetes nodes, use the following
steps to generate a new machine-id.

• For CentOS or Red Hat:

rm -rf /etc/machine-id; systemd-machine-id-setup;
systemctl restart kubelet

• For Ubuntu:

rm -rf /etc/machine-id; rm /var/lib/dbus/machine-id; systemd-machine-id-
setup;
systemctl restart kubelet

NOTE
Check the machine-id again after doing the above steps to verify that each
Kubernetes cluster node has a unique machine-id.

Pods and Services Not Detected

In some cases, the Container Workloads page under Infrastructure > Container Clusters >
MyClusterName is empty although the Workloads page has all the cluster nodes in it. This
issue typically occurs when the wrong container runtime is monitored by Illumio. To resolve
this issue:

1. Validate which container runtime is used in your Kubernetes or OpenShift cluster.
2. Open your configuration file for the C-VEN DaemonSet.
3. Modify the unixsocks mount configuration to point to the right socket path on your

hosts.

Illumio Core for Kubernetes

119

NOTE
This issue typically occurs when containerd or cri-o is the primary container
runtime on Kubernetes or OpenShift nodes and there is an existing docker
container runtime on the nodes that is not "active" (the socket still present
on the nodes and process still running, mostly some leftover from the staging
phase of the servers).

Pods Stuck in Terminating State

In a Kubernetes cluster running containerd 1.2.6-10 as the container runtime, on deleting a
Pod while the C-VEN is deployed may result in the Pod being stuck in a terminating state. If
you see this error, redeploy the C-VEN and modify the socket path as follows:

Change the volumeMount and hostPath from /var/run to /var/run/containerd in the
illumio-ven.yaml file

Enable Firewall Coexistence

NOTE
If Kubelink was deployed on the Kubernetes cluster and is "In Sync" with
the PCE prior to the VEN installation, the manual configuration of firewall
coexistence is not required.

The Illumio C-VEN configures iptables on each host. By default, Illumio Core coexistence
mode is set to Exclusive meaning the C-VEN will take full control of iptables and flush
any rules or chains which are not created by Illumio. In containerized environments, this
may affect communications to/from container components (Docker, Kubernetes, and Illumio
Kubelink). Therefore, Illumio Core must allow firewall coexistence in order to achieve non-dis-
ruptive installation and deployment.

In order to allow firewall coexistence, you must set a scope of Illumio labels in the firewall
coexistence configuration. Once you provision a firewall coexistence scope, the PCE will
enable firewall coexistence configuration on C-VENs whose labels fall within the scope.

NOTE
Labels assigned to Kubernetes cluster nodes must fall within the firewall coex-
istence scope. This is not a requirement for the labels assigned to container
workloads.

To manually configure firewall coexistence:

Illumio Core for Kubernetes

120

1. Log in to the PCE UI and navigate to Settings > Security.
2. On the Security page, navigate to the Manage Firewall Coexistence tab.
3. Select Edit.
4. In the edit wizard, click Add. The Add Firewall Coexistence Labels and Policy State

wizard will pop-up.
5. Select a scope of Illumio labels. The scope must include the labels you intend to use for

your Kubernetes cluster nodes.
a. Select All for Policy State.
b. Illumio Core is Primary Firewall - Select your preference.

i. Yes = (Recommended) Illumio iptable chains will be at the top of iptables at all
times. Non-Illumio iptable chains can coexist, but will follow after Illumio chains.

ii. No = (Not Recommended) Non-Illumio iptable chains may coexist and can be
placed before Illumio chains.

c. Click OK.
6. Click Save.
7. Provision the changes.

IMPORTANT
Be sure to provision the saved changes or else firewall coexistence will not
take effect.

Below is an example of a Firewall Coexistence scope for an Kubernetes cluster which has the
following labels:

• Role: Master OR Worker
• Application: Kubernetes Infrastructure
• Environment: Development
• Location: Data Center 1

The firewall coexistence scope in the example uses the 'All Roles', 'All Environments', 'All
Locations' objects to cover future Kubernetes clusters.

Troubleshooting CLAS Mode Architecture

If your upgrade or installation of CLAS-enabled clusters exhibits unusual behavior, follow
these steps to troubleshoot the issue:

Illumio Core for Kubernetes

121

1. Check that the Kubelinks and C-VENs are operating. Verify at the Container Clusters
page, in the Summary and VENs tabs.

2. Check that Kubernetes Namespace and Kubernetes Workload objects are created, and
are present in the PCE. Verify from the Kubernetes Workloads tab.

3. Check that labeling is done correctly by examining each Kubernetes Workload:

Illumio Core for Kubernetes

122

4. Check that NodePort Services have correct IPs. Find NodePort IPs on the Service Back-
ends tab, under the Virtual Services table column.

Illumio Core for Kubernetes

123

5. Check that traffic is flowing properly. Find the pod-to-pod, and pod-to-application flows
with IP information from the Traffic view. Select “Individual Connections” to see the name
of the Kubernetes Workloads and the IPs of the Pods sending and receiving the traffic.

Aggregating Logs from Kubelink and C-VEN Pods

There are many log aggregation solutions; this topic describes one example of using Fluent
Bit to aggregate our logs. Fluent Bit is a lightweight version of Fluentd with many outputs.
See https://docs.fluentbit.io/manual/pipeline/outputs for official details about supported Flu-
ent Bit output plugins.

Loki is used as storage in this example. Change the output section of your Fluent Bit yaml file
to suit your needs.

Illumio Core for Kubernetes

124

https://docs.fluentbit.io/manual/pipeline/outputs

Loki and Grafana
As an example installation for testing, Loki and Grafana are installed in the illumio-system
namespace. Loki is installed in monolithic mode to use file system storage For more details,
see https://grafana.com/docs/loki/latest/setup/install/helm/install-monolithic/.

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update
helm upgrade --install loki grafana/loki --values loki-values.yaml
-n illumio-system

Example contents of loki-values.yaml:

loki:
 commonConfig:
 replication_factor: 1
 storage:
 type: 'filesystem'
 auth_enabled: false

singleBinary:
 replicas: 1

lokiCanary:
enabled: false
gateway:
enabled: false
grafanaAgent:
installOperator: true

helm upgrade --install --wait -n illumio-system --set admin.username=admin
--set admin.password=UseYourPassword --set persistence.enabled=false
-f grafana-values.yaml grafana
oci://registry-1.docker.io/bitnamicharts/grafana
kubectl -n illumio-system expose deployment grafana --type=NodePort
--name=grafana-service
kubectl -n illumio-system get svc grafana-service
-o go-template='{{range.spec.ports}}
{{if .nodePort}}{{.nodePort}}{{"\n"}}{{end}}{{end}}'

Example contents of grafana-values.yaml:

dashboardsProvider:
 enabled: true

Fluent Bit
The following procedure shows one way of downloading and installing Fluent Bit:

helm repo add fluent https://fluent.github.io/helm-charts
helm repo update
helm upgrade --install fluent-bit fluent/fluent-bit --version 0.40.0

Illumio Core for Kubernetes

125

https://grafana.com/docs/loki/latest/setup/install/helm/install-monolithic/

--values fluentbit-values.yaml
-n illumio-system
kubectl --namespace illumio-system patch daemonsets.apps fluent-bit --patch-
file
fluentbit-patch-nodename.yaml

Example contents of fluentbit-values.yaml:

labels
 app: IllumioFluentBit

image:
 pullPolicy: IfNotPresent

extraVolumes:
 - name: illumio-ven-data
 hostPath:
 path: /opt/illumio_ven_data
 type: Directory

extraVolumeMounts:
 - name: illumio-ven-data
 mountPath: /opt/illumio_ven_data

config:
 service: |
 [SERVICE]
 daemon Off
 flush {{ .Values.flush }}
 log_level debug
 parsers_file parsers.conf
 parsers_file custom_parsers.conf
 http_server On
 http_listen 0.0.0.0
 http_port {{ .Values.metricsPort }}
 health_check On

 inputs: |
 [INPUT]
 Name tail
 Path /var/log/containers/illumio-kubelink*.log
 Tag kubelink.*
 Multiline.parser docker,cri
 Read_From_Head true
 Buffer_Chunk_Size 3MB
 Buffer_Max_Size 10MB
 Mem_Buf_Limit 10MB
 Skip_Long_Lines Off
 [INPUT]
 Name tail
 Path /opt/illumio_ven_data/log/*.log
 Tag cven.*
 Read_From_Head true
 Buffer_Chunk_Size 3MB
 Buffer_Max_Size 10MB

Illumio Core for Kubernetes

126

 Mem_Buf_Limit 10MB
 Skip_Long_Lines Off

 filters: |
 [FILTER]
 Name kubernetes
 Match kubelink.*
 Merge_Log On
 Kube_Tag_Prefix kubelink.var.log.containers.
 Merge_Log_Key log_processed
 [FILTER]
 Name parser
 Parser cvenparser
 Match cven.*
 Key_name log
 Preserve_key false
 Reserve_data true
 [FILTER]
 Name record_modifier
 Match cven.*
 Record nodename ${K8S_NODE_NAME}

 upstream: {}

 outputs: |
 [OUTPUT]
 #for debugging only should be turned off in PROD
 #PLEASE TURN OFF IN PROD
 Name stdout
 Match *

 [OUTPUT]
 Name loki
 Match *
 Host loki.illumio-system.svc.cluster.local
 Port 3100
 Labels job=fluentbit

 customParsers: |
 [PARSER]
 Name cvenparser
 Format regex
 Regex ^(?<time>[^]+) (?<message>.+)$
 Time_Key time
 Time_Format %Y-%m-%dT%H:%M:%S.%L

 extraFiles {}

logLevel: info

Example contents of fluentbit-patch-nodeport.yaml:

spec:
 template:
 spec:

Illumio Core for Kubernetes

127

 containers:
 - name: fluent-bit
 env:
 - name: K8S_NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName

Kubelink Monitoring and Troubleshooting

If you deployed Illumio Core for Kubernetes 3.0.0 or later, Kubelink is deployed as part of
the overall Helm Chart deployment, as described in Deployment with Helm Chart (Core for
Kubernetes 3.0.0 and Higher) [27].

Kubelink Process
Kubelink uses a single Ruby process which runs as: ruby /illumio/init.rb.

Kubelink Startup Log Messages
After deploying Kubelink (whether by Helm Chart or manually), verify your deployment with
the kubectl get pods -n illumio-system command. The kubelinkpod should be shown
with the Running status. In addition, you can review the log file entries after the deployment
with the kubectl logs command pointing to the Kubelink pod name.

kubectl logs <kubelink_pod_name> -n illumio-system

A typical successful Kubelink deployment produces log entries similar to these:

I, [2022-05-23T14:36:53.847248 #10] INFO -- : Starting Kubelink for PCE
https://192.168.88.127:10443
I, [2022-05-23T14:36:53.847502 #10] INFO -- : Metrics reporting enabled;
reporting window 30
I, [2022-05-23T14:36:53.847520 #10] INFO -- : PCE fqdn https://
192.168.88.127:10443
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:36:53.893048 #10] INFO -- : Successfully connected to PCE
I, [2022-05-23T14:36:53.893170 #10] INFO -- : begin sync on resource
namespaces
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:36:53.904369 #10] INFO -- : Synchronized 6 namespaces.
I, [2022-05-23T14:36:53.904424 #10] INFO -- : sync on resource namespaces
successful, setting up resource version to 184232
I, [2022-05-23T14:36:53.904522 #10] INFO -- : Start watch on namespaces
with version 184232
I, [2022-05-23T14:36:53.905678 #10] INFO -- : begin sync on resource nodes
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details

Illumio Core for Kubernetes

128

[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:36:53.918093 #10] INFO -- : Synchronized 1 nodes.
I, [2022-05-23T14:36:53.918143 #10] INFO -- : sync on resource nodes
successful, setting up resource version to 184232
I, [2022-05-23T14:36:53.918175 #10] INFO -- : Start watch on nodes with
version 184232
I, [2022-05-23T14:36:53.919265 #10] INFO -- : begin sync on resource pods
I, [2022-05-23T14:36:53.935536 #10] INFO -- : sync on resource pods
successful, setting up resource version to 184232
I, [2022-05-23T14:36:53.935601 #10] INFO -- : Start watch on pods with
version 184232
I, [2022-05-23T14:36:53.936938 #10] INFO -- : begin sync on resource
services
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:36:54.029965 #10] INFO -- : Synchronized 3 services,
full=true, force=false
I, [2022-05-23T14:36:54.030013 #10] INFO -- : sync on resource services
successful, setting up resource version to 184232
I, [2022-05-23T14:36:54.030046 #10] INFO -- : Start watch on services with
version 184232
I, [2022-05-23T14:36:54.031042 #10] INFO -- : begin sync on resource
replica_sets
I, [2022-05-23T14:36:54.100090 #10] INFO -- : Nothing to sync
I, [2022-05-23T14:36:54.100237 #10] INFO -- : sync on resource
replica_sets successful, setting up resource version to 184232
I, [2022-05-23T14:36:54.100281 #10] INFO -- : Start watch on replica_sets
with version 184232
I, [2022-05-23T14:36:54.101226 #10] INFO -- : begin sync on resource
stateful_sets
I, [2022-05-23T14:36:54.170175 #10] INFO -- : Nothing to sync
I, [2022-05-23T14:36:54.170220 #10] INFO -- : sync on resource
stateful_sets successful, setting up resource version to 184232
I, [2022-05-23T14:36:54.170267 #10] INFO -- : Start watch on stateful_sets
with version 184232
I, [2022-05-23T14:36:54.171159 #10] INFO -- : begin sync on resource
daemon_sets
I, [2022-05-23T14:36:54.245866 #10] INFO -- : Nothing to sync
I, [2022-05-23T14:36:54.246025 #10] INFO -- : sync on resource daemon_sets
successful, setting up resource version to 184232
I, [2022-05-23T14:36:54.246210 #10] INFO -- : Start watch on daemon_sets
with version 184232
I, [2022-05-23T14:36:54.247946 #10] INFO -- : begin sync on resource
replication_controllers
I, [2022-05-23T14:36:54.324925 #10] INFO -- : Nothing to sync
I, [2022-05-23T14:36:54.324977 #10] INFO -- : sync on resource

Illumio Core for Kubernetes

129

replication_controllers successful, setting up resource version to 184232
I, [2022-05-23T14:36:54.325032 #10] INFO -- : Start watch on
replication_controllers with version 184232
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:36:54.505403 #10] INFO -- : replica_sets MODIFIED
I, [2022-05-23T14:37:24.312086 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:37:24.312191 #10] INFO -- : Attaching metrics report
to heartbeat: {:pod_changes=>[{:namespace=>"illumio-system", "added"=>0,
"modified"=>0, "deleted"=>1}], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:37:54.343467 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:37:54.343874 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:38:24.373847 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:38:24.373924 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:38:54.380933 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:38:54.381009 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:39:24.401636 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:39:24.401748 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:39:54.422494 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:39:54.422595 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/

Illumio Core for Kubernetes

130

em-http-request/issues/339 for details
I, [2022-05-23T14:40:24.453077 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:40:24.453217 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:40:54.466210 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:40:54.466455 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:41:24.296410 #10] INFO -- : Verify watches
for ["namespaces", "nodes", "pods", "services", "replica_sets",
"stateful_sets", "daemon_sets", "replication_controllers"]
I, [2022-05-23T14:41:24.296468 #10] INFO -- : Watch client namespaces
Connection Idle: 270.3355407714844s
I, [2022-05-23T14:41:24.296485 #10] INFO -- : Watch client nodes
Connection Idle: 179.93679809570312s
I, [2022-05-23T14:41:24.296499 #10] INFO -- : Watch client pods Connection
Idle: 240.5237274169922s
I, [2022-05-23T14:41:24.296513 #10] INFO -- : Watch client services
Connection Idle: 270.0260314941406s
I, [2022-05-23T14:41:24.296526 #10] INFO -- : Watch client replica_sets
Connection Idle: 269.85888671875s
I, [2022-05-23T14:41:24.296542 #10] INFO -- : Watch client stateful_sets
Connection Idle: 270.0269775390625s
I, [2022-05-23T14:41:24.296573 #10] INFO -- : Watch client daemon_sets
Connection Idle: 270.02490234375s
I, [2022-05-23T14:41:24.296731 #10] INFO -- : Watch client
replication_controllers Connection Idle: 270.02490234375s
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:41:24.300532 #10] INFO -- : Synchronized 3 services,
full=true, force=true
I, [2022-05-23T14:41:24.452846 #10] INFO -- : Heart beating to PCE
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
W, [2022-05-23T14:41:54.186807 #10] WARN -- : watch client for
stateful_sets error callback invoked. Resetting watch ...
W, [2022-05-23T14:41:54.186863 #10] WARN -- : Watch on stateful_sets
ended. Resetting it after 3 seconds
I, [2022-05-23T14:41:54.441880 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:41:54.441991 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>60}
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:41:57.193339 #10] INFO -- : begin sync on resource
stateful_sets
I, [2022-05-23T14:41:57.267375 #10] INFO -- : Nothing to sync
I, [2022-05-23T14:41:57.267411 #10] INFO -- : sync on resource

Illumio Core for Kubernetes

131

stateful_sets successful, setting up resource version to 184451
I, [2022-05-23T14:41:57.267424 #10] INFO -- : Start watch on stateful_sets
with version 184451
[WARNING; em-http-request] TLS hostname validation is disabled (use 'tls:
{verify_peer: true}'), see CVE-2020-13482 and https://github.com/igrigorik/
em-http-request/issues/339 for details
I, [2022-05-23T14:42:24.483142 #10] INFO -- : Heart beating to PCE
I, [2022-05-23T14:42:24.483224 #10] INFO -- : Attaching metrics report to
heartbeat: {:pod_changes=>[], :service_changes=>[], :duration_seconds=>30}
[WARNING; em-http-request] TLS hostname validation is disabled (use
'tls: {verify_peer: true}'), see CVE-2020-13482 and https://github.com/
igrigorik/em-http-request/issues/339 for details

Verify Kubelink Deployment
To verify your Kubelink deployment.

• To check the Kubelink Pod status for Kubernetes:

kubectl get pods -n illumio-system

• To check the Kubelink Pod status for OpenShift:

oc get pods -n illumio-system

The illumio-kubelink-xxxxxxxxxx-xxxxx Pod should be in the "Running" state. If the
either get pods -n illumio-system command shows the kubelink pod is not successfully
running, check the log file for any ERROR messages.

After Kubelink is successfully deployed, you can check the cluster information in the Illumio
PCE UI. From the main menu, navigate to Infrastructure > Container Clusters.

Below is an example of a healthy container cluster state reported by Kubelink, where Status
is "In Sync".

Illumio Core for Kubernetes

132

You can also verify in the PCE UI that Kubelink was successfully deployed by checking the
following:

• Under the Container Workload Profiles tab, namespaces created in your Kubernetes or
OpenShift cluster should be listed. An example is shown below.

• Under Policy Objects > Virtual Services, services created in your Kubernetes or OpenShift
cluster should be listed. An example is shown below.

PCE-Kubelink Connection and Heartbeat
The Kubelink heartbeat to the PCE is logged in its log file. Use the kubectl logs command,
and search for the Heart beating to PCE string to confirm. To confirm PCE-Kubelink con-
nectivity, check the PCE UI, which will show the Kubelink pod as being offline if the heartbeat
is missing 2-3 times (about 10 minutes).

Additional Kubelink Monitoring
Other Kubelink actions that can be confirmed in the Kubelink log file include:

API request succeeds
When Kubelink successfully sets up a watch with the Kubernetes API, the related log entry is:

sync on resource <RESOURCE> successful, setting up resource version to
<RESOURCE VERSION>

Information sent to PCE
When Kubelink successfully sends information to the PCE, the related log entry is:

Synchronized 2 <RESOURCE>, full=..., force=...

Setting Log Verbosity
The log verbosity level is set by default to include INFO, WARNING, and ERROR messages
in the log. If your log appears to be extremely small (showing only ERRORs, for example), or

Illumio Core for Kubernetes

133

is extremely large (which could indicate being set at the DEBUG level), you can check the
log_level setting in the illumio-kubelink-secret.yml file. Values for this setting are:

log_level Setting Description

0 Debug

1 Info (default)

2 Warn

3 Error

Values are cumulative, meaning that a setting includes all other settings greater than it. For
example, the default setting of '1' includes all INFO, WARNING, and ERROR messages in the
log file, but a setting of '3' would only include ERROR messages.

Known Limitations

The known limitations in this release are:

• Kube-proxy mode set to IPVS is currently not supported.
• If a C-VEN on a server hosting containers is paired directly into the Enforced policy state,

other nodes may lose connectivity with the master node until policy is synchronized across
all the nodes.

• Pods which run on the host network stack (inherit the host IP address) are not reported to
the PCE. Any rules written for the host will also be inherited by any hostNetworked Pods
on the host.

• If you are using an external load balancer, the policy configuration will be dependent on the
type of the load balancer used.

• Kubernetes uses NAT tables, which depend on traffic being tracked and stateful. Therefore,
it is not recommended to use stateless rules.

• If a Kubernetes service has both port 1234/TCP and port 2345/UDP configured, a rule
configured with the Pod as Consumer and the virtual service as Provider will open up
both ports 1234/TCP and 2345/TCP, and 1234/UDP and 2345/UDP on the Pod's firewall
(outbound rule).
In case of a Kubernetes service configured with a port and targetPort statement in the
manifest file as shown in the example below:

apiVersion: v1
kind: Service
metadata:
 name: web-frontend-svc
 namespace: app1
 labels:
 app: app1
 tier: web-frontend
 annotations:
 com.illumio.role: Web
spec:
 type: ClusterIP
 ports:

Illumio Core for Kubernetes

134

 - port: 8080
 targetPort: 80
 protocol: TCP
 - port: 8081
 targetPort: 81
 protocol: UDP
 selector:
 app: app1
 tier: web-frontend

This configuration is supported with Illumio Core. In this case, only the port number as-
sociated to the port statement will show this issue, the port number associated to the
targetPort statement will not show this issue and will use the protocol specified in the
Service yaml file.

Illumio Core for Kubernetes

135

Illumio Core for Kubernetes Release Notes 5.3

These release notes describe the new features, enhancements, resolved issues, and known issues for the 5.3.x
releases of Illumio Core for Kubernetes,

What's New in Illumio Core for Kubernetes 5.3.1
These release notes describe the new features, enhancements, resolved issues, and known
issues for the 5.3.x releases of Illumio Core for Kubernetes, also known as Illumio Kubernetes
Operator. This product was formerly known as Illumio Containerized VEN, or C-VEN. Illumio
Core for Kubernetes also includes the related required component Kubelink. Because of this
heritage, some references to this product as "C-VEN" occur throughout the documentation.

Product Version

Compatible PCE Versions: 23.5.31 and later

Current Illumio Core for Kubernetes Version: 5.3.1, which includes:

• C-VEN version: 23.4.3
• Kubelink version: 5.3.1
• Helm Chart version: 5.3.1

Release Types and Numbering
Illumio Core release numbering uses the following format: “a.b.c-d+e”.

• “a.b”: Standard or LTS release number, for example, “2.2”
• “.c”: Maintenance release number, for example, “.1”
• “-d”: Optional descriptor for pre-release versions, for example, “preview2”

What's New in Release 5.3.1

Here's a summary of the new features in this release:

• Support installation of Illumio Core for Kubernetes into a custom namespace
You can now install Illumio Core for Kubernetes into a custom namespace instead of into
the default namespace of illumio-system. The default namespace is overridden for back-
ward compatibility by using the variable namespaceOverride: illumio-system.
For example, to install into the ilo namespace, specify the namespace with the --name-
space option and the --set option specifying namespaceOverride to null:

helm install illumio -f illumio-values.yaml oci://quay.io/illumio/
illumio --version 5.3.1 --namespace ilo --create-namespace --set
namespaceOverride=null

Alternatively, specify the namespace with the --namespace option but also use --set to
explicitly set namespaceOverride to ilo:

Illumio Core for Kubernetes

136

helm install illumio -f illumio-values.yaml oci://quay.io/illumio/
illumio --version 5.3.1 --namespace ilo --create-namespace --set
namespaceOverride=ilo

• "Enforce NAT Mode 1:1" option creates public workload interface
Workloads now have a new optional feature "Enforced NAT mode 1:1" that, when enabled,
ensures that pseudo-public IP addresses are detected and are then saved as workload in-
terfaces even when the C-VEN (or VEN) cannot identify the datacenter or service provider.
If this option remains disabled, the PCE either relies on the C-VEN to report the public
IP address or derives it based on a datacenter match. When this option is enabled on a
Container Cluster, the feature applies to all host workloads on all of its cluster nodes.

• Map Kubernetes Workload labels to Illumio labels
You can now map labels on Kubernetes Workloads to corresponding Illumio labels by using
a workloadLabelMap section in a label mapping Custom Resource Definition (CRD) within
a YAML, in a kind: LabelMap declaration. This Kubernetes Workload label mapping is oth-
erwise defined like the existing feature for mapping Kubernetes node (or host workloads)
labels to Illumio labels. See Map Kubernetes Node or Workload Labels to Illumio Labels.

CAUTION
Mapping labels for Kubernetes Workloads only works in CLAS-enabled de-
ployments, and requires PCE release 24.5.0.

• Added Support for hostPort
Traffic enforcement of Kubernetes Workloads, which have Pods exposed via hostPort, is
now available.

CAUTION
The support for hostPort is available only on deployments running PCE
24.5.0.

• Added support for Google Kubernetes Engine (GKE)
The Google Kubernetes Engine (GKE) is now a supported orchestration platform on Illumio
Core for Kubernetes CLAS-enabled deployments that use PCE release 24.5.0 or later. For
complete requirements for GKE support. see the Illumio Support Portal page on "Kuber-
netes Operator OS Support and Dependencies."

• Kubernetes Workloads Show Label Source
A new a com.ilo.result.* annotation on a PCE label for a Kubernetes Workload now
shows the source of that label with a code appended to the annotation: where the code
cwp means from a Container Workload Profile, map means from a LabelMap, and annota-
tions means from a Kubernetes annotation. These values are shown in the PCE UI on the
workload details page (under the Kubernetes Attributes section), and at the command-line
as part of the kubectl get deploy command output.

Limitations

• You cannot change an existing deployment in the illumio-system namespace to a custom
namespace through an upgrade.

• Mapping labels for Kubernetes Workloads is available only in CLAS-enabled deployments,
and currently requires PCE release 24.5.0.

Illumio Core for Kubernetes

137

https://product-docs-repo.illumio.com/Tech-Docs/Containers/out/en/kubernetes-and-openshift/deployment-with-helm-chart--core-for-kubernetes-3-0-0-and-later-/map-kubernetes-node-labels-to-illumio-labels.html

Base Image Upgraded

The C-VEN base OS image has been upgraded to address several vulnerabilities, including
CVE-2024-45337 and 2024-45338. Customers are advised to upgrade to Core for Kuber-
netes 5.3.1 for these security fixes.

Resolved Issues in 5.3.1
This section provides a list of resolved issues.

Illumio Core for Kubernetes

138

Resolved Issues

Issue Description

E-123084 Kubelink: wrong LabelMap feature flag for older 24.x PCE versions

Kubelink incorrectly interpreted some older PCE versions as higher (more recent) than 24.5, which
enabled the LabelMap feature for PCE versions that do not support it. This caused Kubelink 5.3.0 to
be incompatible with many older 24.x PCE versions.

E-123080 Kubelink: labels defined by Container Workload Profile are ignored when Kubelink restarts

Kubelink was not receiving accurate data for workloads using managed Container Workload Pro-
files. So when Kubelink restarted, it might use out-of-date Container Workload Profile data and
improperly remove or mislabel some workloads, causing incorrect policies.

E-122830 Kubelink: skip of ACK of unknown workload causes repeated policy calculations and sets ACK

Part of the policy Kubelink received from the PCE for disconnected C-VENs was not being acknowl-
edged back to the PCE, which caused unnecessary policy calculations and high PCE load.

E-122553 C-VEN 23.4.x fw_tampering_revert_failure after upgrade

False-positive firewall tamper alerts ("VEN firewall tampered") appeared after upgrading to C-VEN
23.x, because of the old and unused Illumio iptables chain.

E-122422 C-VEN activation failing

In some cases, attempts to bring onboard and pair a second Kubernetes AWS EKS cluster were
failing to activate the C-VENs.

E-122306 Kubelink: One service appears multiple times in service update

Kubelink was sending one service multiple times in an update request to PCE, which caused multiple
duplicates of Service Backends, and slowed PCE responsiveness. Older Kubelink 3.1.x and 4.x also
have this issue and should be upgraded to Kubelink 5.3.0, either using Helm chart 5.3.0, or by using
YAML files generated from this Helm chart version. Kubelink 5.3.0 in non-CLAS mode is backward
compatible with all currently supported PCE versions.

E-121122 C-VEN: False positive vulnerability detection on Quay

The Quay vulnerability scanner falsely detected C-VEN as having high severity vulnerabilities.

E-120773 Increasing memory use and "out of memory errors" occur on 22.5.14 C-VEN nodes

Resolved intermittent "out of memory" occurrences in C-VEN 22.5.14.

Illumio Core for Kubernetes

139

Illumio Core for Kubernetes Release Notes 5.2

January 2025

About Illumio Core for Kubernetes 5.2
These release notes describe the resolved issues, known issues, and related information for
the 5.2.x releases of Illumio Core for Kubernetes, formerly known as Illumio Containerized
VEN, or C-VEN. Illumio Core for Kubernetes also includes the related required component,
Kubelink. Because of this heritage, many references to this product as "C-VEN" are still used
throughout the documentation.

Document Last Revised: January 2025

Product Version

Compatible PCE Versions: 23.5.10 and later releases

Current Illumio Core for Kubernetes Version: 5.2.3, which includes:

• C-VEN version: 23.4.2
• Kubelink version: 5.2.1
• Helm Chart version: 5.2.3

Updates for Core for Kubernetes 5.2.3

Kubelink

Resolved Issue

• One service appears multiple times in service update (E-122306)
Kubelink was sending one service multiple times in an update request to PCE, which
caused multiple duplicates of Service Backends, and slowed PCE responsiveness. Older
Kubelink 3.1.x and 4.x also have this issue and should be upgraded to Kubelink 5.2.1, either
using Helm chart 5.2.3, or by using yaml files generated from this Helm chart version.
Kubelink 5.2.1 in non-CLAS mode is backward compatible with all currently supported PCE
versions.

Updates for Core for Kubernetes 5.2.2

Illumio Core for Kubernetes

140

C-VEN

Resolved Issues

• Multiple C-VENs not syncing policy (E-122102)
In larger CLAS-enabled clusters with very big policies, even though C-VENs initially ap-
peared to to be properly synced, the policy was not updated.

• C-VEN on PCE UI has "-dev" in version but image pulled from helm does not (E-120423)
After upgrading to release 5.2.0, the C-VEN version was reported with a "-dev" string
appended (for example, "23.4.0-8-dev") in the PCE UI (at the VEN details page) and other
locations like in /etc/agent_version, but the image specified in the C-VEN daemonset
resource did not.

• C-VEN: unable to send flows if there is a lot of data (E-119110)
When C-VEN attempted to send a large amount of flow data at once, the transmission
would fail, and after a few retries the AgentMgr process would crash, causing C-VEN to
stop sending flow records.

What's New in Release 5.2.1
• Helm Chart option to Disable NodePort Forwarding

A new option was added to Helm Chart for C-VEN that disables NodePort forwarding on
host workloads. After setting enforceNodePortTraffic: never in the Helm values file,
C-VEN behaves like before in its 22.5 version-- that is, the forward chain on Node is open,
and custom iptables rules must be used to enforce traffic in this chain.

Updates for Core for Kubernetes 5.2.1

Kubelink

Resolved Issues

• Kubelink can't start on OpenShift because of fsGroup 1001 (E-120425)
When using Helm Chart 5.2.0 on OpenShift, Kubelink would not start because of fsGroup
1001.

C-VEN

Resolved Issues
In an early version of these Release Notes issues E-119682 and E-119110 were incorrectly listed
as being resolved.

• NodePort access is working when it should be blocked (E-120655)
NodePort traffic was being always allowed, with or without a rule allowing the traffic from
an external resource to the NodePort service. This issue was fixed by adding missing legacy
iptables command line utilities to the UBI9-based C-VEN.

Illumio Core for Kubernetes

141

• Move C-VEN base image to a smaller image (E-118492)
C-VEN now uses a UBI9-micro image as its base image, using the current latest version
9.4-15.

What's New in Release 5.2.0
• "Wait for Policy" Feature

With a new Wait For Policy feature, CLAS-enabled Kubelink can be configured to automati-
cally and transparently delay the start of an application container in a pod until a policy is
properly applied to the pod. This feature replaces the local policy convergence controller,
the Illumio readiness gate. A readiness gate required adding the readinessGates.condi-
tionType into the spec YAML file of the Kubernetes Workload. Instead, Wait For Policy
uses an automatically injected init container, with no change of the user application nee-
ded. When enabled, Wait For Policy synchronizes the benefit of Kubernetes automatic
container creation with the protection of proper policy convergence into the new container.
For more information, see "Wait For Policy" Feature [145].

• CLAS Flat Network Support
Starting in version 5.2.0, the Kubelink Operator supports flat network CNIs in CLAS mode,
a feature that was previously only available in non-CLAS mode. This update includes com-
patibility with flat network types such as Azure CNI Pod Subnet and Amazon VPC CNI.
To enable a flat network CNI, set the networkType parameter to flat in the Helm Chart's
illumio-values.yaml file during installation.
Also note that in CLAS-enabled flat networks, if a pod communicates with a virtual ma-
chine outside the cluster using private IP addresses, you must enable the annotation
meta.illumio.podIPObservability. This is a scenario in which the virtual machine is in
a private network and has an IP address from the same range as cluster nodes and pods.
In this case, the PCE needs to know the private IP address of the pod to be able to open
a connection on the virtual machine. The main benefit of CLAS is that the PCE no longer
directly manages individual pods, so the implementation expects a specific annotation on
such pods. Traffic between such private IPs will be blocked without this annotation, and will
appear in the UI as blocked.
In this case, when the application communicates through private IPs, add the following
annotation so that Kubelink can then report the private IPs of Kubernetes Workloads to the
PCE:

metadata:
 annotations:
 meta.illumio.podIPObservability: "true"

• Kubelink Support Bundle
To assist the Illumio Support team with more details for troubleshooting, Kubelink now
provides a support bundle that collects up to 2 GB of logs, metrics, and other data inside
its pod. Future versions will add the option to upload these support bundles to the PCE.
Currently, you must copy this support bundle by running the script /support_bundle.sh
inside the Kubelink pod. The script generates debug data, creates a gzipped tar archive
using stdout as output, and encodes this data using Base64.
Use the following command to generate and transfer the Kubelink support bundle from its
pod:

kubectl --namespace illumio-system exec deploy/illumio-kubelink
-- /support_bundle.sh | base64 --decode > /tmp/kubelink_support.tgz

Send the resulting compressed archive file to Illumio Support when requested.
• Base OS Upgraded to UBI9

Illumio Core for Kubernetes

142

https://learn.microsoft.com/en-us/azure/aks/concepts-network-azure-cni-pod-subnet
https://docs.aws.amazon.com/eks/latest/userguide/managing-vpc-cni.html

The base OS has been upgraded to Red Hat Universal Base Image 9 (micro UBI9 for
Kubelink, mini UBI9 for C-VEN).

IMPORTANT
Important Notice: With the base image upgrade for both Kubelink and
C-VEN, you must adjust resource allocations according to the guidance de-
scribed below in the "Resource Allocation Guidelines [143]" section. You
must ensure that resources are updated prior to the upgrade to achieve
optimal performance, and to avoid any potential degradation in product
performance.

• Enhanced Pod Stability for Kubelink and C-VEN
To address the challenge of pod eviction during Kubernetes cluster issues or space short-
ages, Kubelink was previously the first pod to be evicted, which led to failures in policy
enforcement. Recognizing the critical need for stability, Helm Chart version 5.2.0 introduces
default priority classes for both Kubelink and C-VEN. Kubelink is now assigned the priority
class of system-cluster-critical, while C-VENs receive system-node-critical. This
implementation significantly enhances the resilience of your deployments, ensuring that
key components remain operational even under resource constraints.

• Changes to Supported Orchestration Platforms and Components in 5.2.0
The 5.2.0 release contains several changes to supported platforms and components. For
full details, see Kubernetes Operator OS Support and Dependencies on the Illumio Support
portal (log in required).

Resource Allocation Guidelines

New resource allocation guidelines have been developed to help configure deployments to
achieve optimal performance and cost-efficiency.

These guidelines are grouped into the following general deployment sizes:

• Small-scale: Customers with limited Kubernetes deployments and moderate workloads.
• Medium-scale: Customers with moderate-sized Kubernetes environments and growing

workloads.
• Large-scale: Customers with extensive Kubernetes deployments and high-performance

requirements.

The following variables determine the deployment sizes listed above:

• Number of nodes per cluster
• Total number of workloads per cluster
• Total policy size per cluster

Set the resources values in the appropriate pod spec (Kubelink or C-VEN) yaml file under
the storage section, as shown in the following example:

storage:
 sizeGi: 1
 resources:
 limits:

Illumio Core for Kubernetes

143

https://support.illumio.com/software/os-support-package-dependencies/kubernetes_operator.html#5.2.0

 memory: 600Mi
 requests:
 memory: 500Mi
 cpu: 500m

If you have two parameters that match one category, and a third parameter that matches
another, it’s important to select the category based on the highest value among them.

For instance, if the number of nodes per cluster is 8, and the total number of Kubernetes
workloads is 500, but the average size of the policy is 1 Gi, the resource allocation should
align with the large-scale resource allocation. This ensures that your resources are appropri-
ately scaled to meet the demands of your workloads, optimizing performance and stability.

In practice, monitor these resources, and if usage is at 80% of these limits, then consider
increasing.

NOTE that amounts are expressed in mebibytes (Mi) and gibibytes (Gi) and not in megabytes
(MB) or gigabytes (GB).

Small-scale resource allocation

Customer Cate-
gory

Nodes per Clus-
ter

Total K8s Work-
loads

Total Policy
Size

Small-scale 1 - 10 0 - 1000 0 - 1.5 Mi

Resources C-VEN Kubelink Storage

Requests CPU 0.5 0.5 0.5

Requests memory 600 Mi 500 Mi 500 Mi

Limits CPU 1 1 1

Limits memory 700 Mi 600 Mi 600 Mi

Volumes size limits n/a n/a 1 Gi

Illumio Core for Kubernetes

144

Medium-scale resource allocation

Customer Catego-
ry

Nodes per Clus-
ter

Total K8s Work-
loads

Total Policy Size

Medium-scale 10 - 20 1000 - 5000 1.5 Mi - 500 Mi

Resources C-VEN Kubelink Storage

Requests CPU 2 2 1

Requests memory 3 Gi 5 Gi 5 Gi

Limits CPU 3 2 2

Limits memory 5 Gi 7 Gi 7 Gi

Volumes size limits n/a n/a 5 Gi

Large-scale resource allocation

Customer Catego-
ry

Nodes per Clus-
ter

Total K8s Work-
loads

Total Policy Size

Large-scale 20+ 5000 - 8000 500 Mi - 1.5 Gi

Resources C-VEN Kubelink Storage

Requests CPU 2 3 1

Requests memory 6 Gi 10 Gi 10 Gi

Limits CPU 3 4 2

Limits memory 8 Gi 12 Gi 12 Gi

Volumes size limits n/a n/a 10 Gi

"Wait For Policy" Feature

With a new Wait For Policy feature, CLAS-enabled Kubelink can be configured to automat-
ically and transparently delay the start of an application container in a pod until a policy
is properly applied to that container. This synchronizes the benefit of automatic container
creation with the protection of proper policy convergence into the new container.

This Wait For Policy feature replaces the existing local policy convergence controller, also
known as a readiness gate. A readiness gate required manually adding the readinessGate
condition into the spec of the Kubernetes Workload. Instead, Wait For Policy uses an auto-
matically injected init container, which requires no change to the user application.

Illumio Core for Kubernetes

145

Behavior
When Wait For Policy is enabled, Kubelink creates a new MutatingWebhookConfiguration.
This webhook injects an Illumio init container into every new pod. Now a new pod lifecycle
consists of the following sequence of actions:

1. Kubernetes creates a pod.
2. The pod creation request is intercepted by a mutating webhook.
3. Kubernetes requests MutatingAdmissionWebhook Controller running in Kubelink.
4. Controller returns with a new pod patched with an Illumio init container.
5. Init container starts in the pod, and periodically checks the policy status of the pod using

the Kubelink status server.
6. At the same time, Kubelink is preparing a policy for the new pod, and is sending the

policy to the pod's C-VEN.
7. The C-VEN applies policy to the pod, and sends an acknowledgment to Kubelink.
8. Kubelink reports that the policy is now applied to the init container.
9. The Init container exits, and allows the original container to start.
10
.

If a policy is not applied within the configured time (see Configuration [146] section
for Helm Chart waitForPolicy.timeout parameter), the init container exits anyway, and
allows the original container to start.

The Illumio init container must be accessible from all namespaces that use Wait for Policy.
An easy way to ensure this accessibility is to make init available from a public repository.
However, a private repository can be used if you manage the secret deployment properly,
such as by deploying init from the same repository as all other containers, or by using a
secret management tool.

Configuration
The Wait For Policy feature is disabled by default. To enable it, change the waitForPolicy:
enabled value to true in the Helm Chart illumio-values.yaml file. The following is the
default Helm Chart configuration for Wait For Policy:

Wait for Policy - Illumio delays the start of Pods until policy is
applied
waitForPolicy:
 ## @param waitForPolicy.enabled Enable Wait for Policy feature
 enabled: false
 ## @param waitForPolicy.ignoredNamespaces List of namespaces where
Illumio
 ## doesn't delay start of Pods. kube-system and
 ## illumio-system name are ignored by Kubelink for this feature by
default,
 ## even if not specified in this list.
 ignoredNamespaces:
 - kube-system
 - illumio-system
 ## @param waitForPolicy.timeout How long will pods wait for policy, in
seconds
 timeout: 130

Pods starting in namespaces listed in ignoredNamespaces start immediately, without an
Illumio init container injected into them. The namespaces kube-system and illumio-system
are always ignored by the MutatingAdmissionWebhook Controller running in Kubelink, even
if those are not specified in the configuration. The default value of ignoredNamespaces

Illumio Core for Kubernetes

146

contains kube-system and illumio-system for reference, and can be extended with custom
namespaces.

The timeout value is a total allowed run time of the init container. After this time elapses, the
init container exits even if policy is not applied, and allows the original container to start.

Updates for Core for Kubernetes 5.2.0

Kubelink

Resolved Issues

• Helm: pull secret to quay gets created even if no credentials are set (E-119659)
Helm chart now creates Illumio pull secret only if credentials are specified and also exter-
nally passed secret names are included.

• Kubelink: error concurrent map read and map write (E-119626)
Kubelink was restarted because previous container exited with the message "fatal error
concurrent map read and map write."

• Kubelink: Update base image to address vulnerabilities (E-119429)
The Unified Base Image was upgraded to address CVE-2023-45288.

• Kubelink needs to have higher priority assigned to avoid going to evicted state
(E-113920)
If the Kubernetes cluster encounters problems or runs out of space, Kubelink was the
first pod to be put into the evicted state, which caused policy enforcement to fail. To
prevent permanent eviction, in Helm chart version 5.2.0 the Kubelink Deployment and
C-VEN DaemonSets are assigned priority classes by default -- system-cluster-critical
for Kubelink and system-node-critical for C-VENs.

C-VEN

Resolved Issues

• CVEN: Update base image to address vulnerabilities (E-119428)
The 23.4 C-VEN Unified Base Image was upgraded to the latest UBI9 to address vulnerabil-
ities described in CVE-2014-3566, CVE-2014-3566, CVE-2014-3566, CVE-2022-3358, and
CVE-2023-27533.

• Cannot deploy C-VEN to GKE when using default OS (E-116506)
For GKE clusters, when using the default cluster OS (Container-Optimized OS from Goo-
gle), the node filesystems are read-only. This prevented C-VEN from mounting /opt/illu-
mio_ven_data and writing into it for persistent storage.
To resolve this issue, a new variable `cven.hostBasePath was added to the 5.2.0 Helm
Chart to specify where the C-VEN DaemonSet mounts its data directory. The default value
is /opt. Use this variable to specify where the C-VEN DaemonSet mounts its data directo-
ry. If using a Container-Optimized OS, you can set the directory to /var.

• [CVEN]: Failed to load policy (E-115231)
The log message "Error: Failed to load policy" was appearing during scenarios that
were obvious or expected. The log level for this message has been changed from Error to
Info.

Illumio Core for Kubernetes

147

• Re-adding node does not re-pair it (E-98120)
When deleting and then re-adding the same node, the node would not reappear, and its
policy disappeared.

Illumio Core for Kubernetes

148

Illumio Core for Kubernetes Release Notes 5.1

Published: September 4, 2024

Core for Kubernetes 5.1.10

Compatible PCE Versions: 23.5.10 and most later releases

Current Illumio Core for Kubernetes Version: 5.1.10, which includes:

• C-VEN version: 23.3.1
• Kubelink version: 5.1.10
• Helm Chart version: 5.1.10

Before deploying any Illumio Core for Kubernetes 5.1.x version, confirm your PCE version
supports it. For example, currently Illumio Core for Kubernetes versions 5.1.0 and 5.1.2 are
supported only with PCE versions 23.5.10 (for On Premises customers) or 24.1.x (for SaaS
customers), but NOT on PCE versions 23.5.1 or 23.6.0, or any lower versions. For complete
compatibility details, see the Kubernetes Operator OS Support and Dependencies page on
the Illumio Support Portal.

Illumio Core release numbering uses the following format: “a.b.c-d+e”.

• “a.b”: Standard or LTS release number, for example, “2.2”
• “.c”: Maintenance release number, for example, “.1”
• “-d”: Optional descriptor for pre-release versions, for example, “preview2”

Limitations

• NodePort
The following limitations exist regarding NodePort policy enforcement and flows:
• Only NodePort Services with externalTrafficPolicy set to "cluster" are supported.

(This is the default and most frequently used value for this setting.)
• When writing rules to allow traffic to flow from external (to the cluster) entities and

NodePort Service, the source side of the rule must contain all nodes in the cluster.
For example, given the following setup:
- Worker nodes in the cluster are labeled as Role: Worker Node
- Clients accessing the Service running in the Kubernetes cluster are labeled Role: Client
- The NodePort Service is labeled Role: Ingress
Normally, the rule would be written as Role: Client -> Role: Ingress. However, for thisre-
lease the rule must also include all nodes in the cluster to work correctly: Role: Client +
Role: Worker Node -> Role: Ingress.

• Flat Network support in CLAS mode
Using EKS or AKS in a flat network topology, such as EKS with AWS VPC CNI or AKS with
Azure CNI, is not supported in CLAS-enabled clusters.

Illumio Core for Kubernetes

149

https://support.illumio.com/shared/software/os-support-package-dependencies/kubernetes_operator.html

Updates for Core for Kubernetes 5.1.10

Kubelink

Resolved Issues

• Last updated policy timestamp for C-VENs reflects Kubernetes Workload policy
changes (E-118372)
The last updated policy timestamp on C-VENs now updates after a C-VEN successfully
updates the policy for its pods.

• Unexpected Potentially Blocked traffic in Explorer (CLAS mode) (E-116105)
In CLAS environments, some allowed traffic flows were wrongly reported as Potentially
Blocked because of missing IP sets in the firewall test database.

Updates for Core for Kubernetes 5.1.7

Kubelink

Resolved Issues

• Kubelink: policy service blocked when agent disconnects while receiving policy mes-
sage (E-117099)
In some situations, policies stopped being sent due to a policy channel lock after C-VEN
disconnected while receiving a policy update.

• Kubelink: policy service blocked if one agent is not reading policy message (E-116967)
In some situations, policies stopped being sent after a C-VEN became unresponsive.

• Kubelink can't save sets because of message size limit (E-116825)
Policy updates were being interrupted when large policy sets were being sent. The mes-
sage size has been increased to permit larger policy transmissions .

• Kubelink: workload events processing is slowed down by policy updates (E-116706)
The processing of workload events from Kubernetes sometimes became slow when han-
dling thousands of Kubernetes Workloads, or the policy PCE requests were taking too long,
or if there was no previous policy version in storage.

• Kubelink sends wrong workload href in policy ACK request (E-116640)
In some CLAS-enabled clusters that host large numbers of workloads, the Kubernetes
Workloads page showed an old policy apply date. Kubelink incorrectly sent a policy ACK
for some Kubernetes Workloads with the host workload URI. The PCE responded with a
406 error, and a "no policy" ACK was stored.

Illumio Core for Kubernetes

150

Updates for Core for Kubernetes 5.1.3

Kubelink

Resolved Issues

• Kubelink can't save policy to storage (E-116539)
Kubelink could not store cluster policy due to storage size limitations. To permit increased
storage sizes, the Helm chart now includes new resources values under the storage
component, as well as under cven and kubelink (note that amounts are in MiB not MB,
and GiB not GB):

kubelink:
 resources:
 limits:
 memory: 500Mi
 requests:
 memory: 200Mi
 cpu: 200m

cven:
 resources:
 limits:
 memory: 300Mi
 requests:
 memory: 100Mi
 cpu: 250m

storage:
 resources:
 limits:
 memory: 500Mi
 requests:
 memory: 200Mi
 cpu: 100m

• Pod to pod flows and pod labels are missing from Explorer search results (E-116271,
E-116272)
In CLAS-enabled clusters, Explorer was not showing pod labels, only workload labels. In
addition, Explorer did not return some traffic flows, even when trying with label-based
search, or port-based search, or even searching using workload labels + pod labels. Also,
pod traffic was being mapped to workloads.

Updates for Core for Kubernetes 5.1.2

Kubelink

Resolved Issues

• Helm Chart: etcd storage size limit (E-115417)

Illumio Core for Kubernetes

151

Kubelink in CLAS mode uses etcd as a local cache for policy and runtime data. The Helm
Chart now accepts a new variable called `storage.sizeGi` to set the size (in GiB not GB) of
ephemeral storage. The default value is 1.

• Kubelink - Unable to process policy with custom iptables rules (E-115250)
Kubelink in CLAS mode failed to process policy received from the PCE when custom
iptables rules were present, producing the error message "json: cannot unmarshal object
into Go struct field."

• Kubelink to PCE connectivity issues - connection reset by peer (E-115049)
CLAS-enabled Kubelink was entering degraded mode too soon because of PCE connectivi-
ty problems. Now Kubelink also retries requests after network and OS errors, which avoids
premature degraded mode entry.

• C-VEN reporting potentially blocked traffic between worker nodes (E-114691)
CLAS processing of outbound rules to a ClusterIP Service replaced the "All Services" des-
tination in the rule with actual ports from the Kubernetes Service. If a destination label
included a Kubernetes Service, this caused a missing iptables rule between nodes.

• Max policy message size between Kubelink and C-VEN is too small (E-113714)
The default gRPC message size was set to too small of a value, which caused C-VENs to
reject policy messages that were larger than this value. The default gRPC message size is
now larger, to avoid this problem.

Updates for Core for Kubernetes 5.1.0

What's New in the 5.1.0 Release

The following are new and changed items in the 5.1.0 release from the previous releases of
C-VEN and Kubelink:

• New CLAS architecture option
Kubelink now can be deployed with a Cluster Local Actor Store (CLAS) module, which
manages flows from C-VENs to PCE, and policies from PCE to C-VENs. The CLAS-enabled
Kubelink tracks individual pods, and when they are created or destroyed, instead of this
being communicated directly to the PCE. To migrate from an existing (non-CLAS) environ-
ment to a CLAS-enabled one, set the clusterMode parameter to migrateLegacyToClas in
your deployment YAML file (typically named illumio-values.yaml). See the README.md
file accompanying the Helm Chart for full details on this and other Helm Chart parameters.

• Workloads more closely match Kubernetes architecture
In CLAS-enabled environments, workloads are now conceptually tied to their containers,
instead of being referred to in context of their pods, which more closely matches Kuber-
netes practice. To reflect this change, such workloads in CLAS environments are called
Kubernetes Workloads, regardless of what containers have been spun up or destroyed to
run the applications. In non-CLAS environments, the existing term Container Workloads is
still used as in prior releases, corresponding to Pods. In mixed environments (with both
non-CLAS and CLAS-enabled clusters), the PCE UI shows both Container Workloads and
Kubernetes Workloads, as appropriate.

• Degraded mode for CLAS-enabled Kubelink
If a CLAS-enabled Kubelink detects that its connection with the PCE becomes unavailable
(for example, due to connectivity problems or an upgrade), Kubelink by default enters a
degraded mode. In this degraded mode, new Pods of existing Kubernetes Workloads get
the latest policy version cached in CLAS storage. When Kubelink detects a new Kubernetes
Workload with exactly the same label sets and in the same namespace as an existing

Illumio Core for Kubernetes

152

Kubernetes Workload, Kubelink delivers the existing, cached policy to Pods to this new
Workload. If Kubelink cannot find a cached policy (that is, when labels of a new Workload
do not match those of any existing Workload in the same namespace), Kubelink delivers a
“fail open” or “fail closed” policy based on the Helm Chart parameter degradedModePoli-
cyFail. The degraded mode can also be turned on or off by the Helm Chart parameter
disableDegradedMode.

• Illumio annotations in CLAS mode specified on the workload and not on Pod's template
Illumio annotations when in CLAS mode are now specified on the Kubernetes Workload
and not on the pod's template.

• Docker support dropped
The Docker CRI is no longer supported as of the 5.0.0 release of Illumio Core for Kuber-
netes.

C-VEN

Resolved Issue

• Permanently delete Kubernetes Workloads after certain period when they are unpaired
(E-112362)
Kubernetes Workloads (from a CLAS environment) are pruned from the PCE one day (by
default) after they are unpaired. The length of time that elapses (in seconds) before this
pruning occurs is configurable with the vacuum_entities_wait_before_vacuum_seconds
parameter, which is set in the PCE agent.yml file. The default value for this parameter is
86400 (24 hours).

Known Issues

• When C-VEN starts first, a 404 from PCE when getting CLAS token (E-109259)
When C-VEN is started first, it tries to contact the PCE in order to obtain CLAS token, but
receives a 404 error. This is expected behavior for this scenario, which is only momentary.
Kubelink eventually starts normally, and C-VEN obtains the CLAS tokens as expected.

• Helm install fails with Helm version 3.12.2 but works with 3.10 (E-108128)
When installing with Helm version 3.12.2, the installation fails with a YAML parse error.
Workaround: Use Helm version 3.10, or version 3.12.3 or later.

• Re-adding node does not re-pair it (E-98120)
After deleting a node and re-adding the same node, the node does not reappear, and
previously established policy disappears from the node.
Workaround: Uninstall and re-install Illumio Core for Kubernetes from scratch with the node
present.

Kubelink

Resolved Issues

• CLAS: NodePort - pod rules are not removed after disabling rule (E-111689)
After disabling a NodePort rule that opens it to outside VMs, iptable entries for pods with
a virtual service's targetPort were not being removed as expected. Now the pod no longer
remains opened. Host iptables are removed, so traffic does not go through, and the pod
ports are properly closed.

• CLAS - The etcd pod crashes when node reboots (E-106236)
The etcd pod would crash if one of the nodes in the cluster was rebooted.

Illumio Core for Kubernetes

153

Known Issues

• CLAS-mode Kubelink pod gets restarted once when deploying Illumio Core for Kuber-
netes (E-109284)
The Kubelink pod is restarted after deploying Illumio Core for Kubernetes in CLAS mode.
There is no workaround. Kubelink runs properly after this single restart.

• CLAS: Container Workload Profile label change is not applied to Kubernetes Workloads,
only to Virtual Services (E-109168)
When removing labels in a Container Workload Profile, existing Kubernetes Workloads that
are managed by that profile do not have their labels changed automatically to labels based
on annotations. These existing Kubernetes Workloads must be updated with the kubectl
apply command for the labels change to take effect. New Kubernetes Workloads created
after the profile label change will have the new labels.
This works as designed.

Security Information for Core for Kubernetes 5.1
For information about security issues, security advisories, and other security guidance per-
taining to this release, see Illumio’s Knowledge Base in Illumio's Support portal.

Illumio Core for Kubernetes

154

Illumio Core for Kubernetes Release Notes 5.0.0

About Illumio Core for Kubernetes 5.0
These release notes describe the resolved issues, known issues, and related information for
the 5.0.0 release of Illumio Core for Kubernetes, formerly known as Illumio Containerized
VEN, or C-VEN. Illumio Core for Kubernetes also includes the related required component,
Kubelink. Because of this heritage, many references to this product as "C-VEN" are still used
throughout the documentation.

Document Last Revised: January 2024

Product Version
Compatible PCE Versions: 23.5.10 and later releases

Current Illumio Core for Kubernetes Version: 5.2.3, which includes:

• C-VEN version: 23.4.2
• Kubelink version: 5.2.1
• Helm Chart version: 5.0.0

Illumio Core release numbering uses the following format: “a.b.c-d+e”.

• “a.b”: Standard or LTS release number, for example, “2.2”
• “.c”: Maintenance release number, for example, “.1”
• “-d”: Optional descriptor for pre-release versions, for example, “preview2”

What's New in C-VEN and Kubelink
The following are new and changed items in this release from the previous releases of C-VEN
and Kubelink:

• New CLAS architecture option
Kubelink now can be deployed with a Cluster Local Actor Store (CLAS) module, which
manages flows from C-VENs to PCE, and policies from PCE to C-VENs. The CLAS-enabled
Kubelink tracks individual pods, and when they are created or destroyed, instead of this
being communicated directly to the PCE. To migrate from an existing (non-CLAS) environ-
ment to a CLAS-enabled one, set the clusterMode parameter to migrateLegacyToClas i
n your deployment YAML file (typically named illumio-values.yaml). See the README.md
file accompanying the Helm Chart for full details on this and other Helm Chart parameters.

• Workloads more closely match Kubernetes architecture
In CLAS-enabled environments, workloads are now conceptually tied to their containers,
instead of being referred to in context of their pods, which more closely matches Kuber-
netes practice. To reflect this change, such workloads in CLAS environments are called

Illumio Core for Kubernetes

155

Kubernetes Workloads, regardless of what containers have been spun up or destroyed to
run the applications. In non-CLAS environments, the existing term Container Workloads is
still used as in prior releases, corresponding to Pods. In mixed environments (with both
non-CLAS and CLAS-enabled clusters), the PCE UI shows both Container Workloads and
Kubernetes Workloads, as appropriate.

• Illumio annotations in CLAS mode specified on the workload and not on Pod's template
Illumio annotations when in CLAS mode are now specified on the Kubernetes Workload
and not on the pod's template.

• Docker support dropped
The Docker CRI is no longer supported as of this 5.0.0 release of Illumio Core for Kuber-
netes.

NodePort Limitations
• NodePort

Here are some limitations around NodePort policy enforcement and flows:
• Only NodePort Services with externalTrafficPolicy set to "cluster" are supported.

(This is the default and most frequently used value for this setting.)
• When writing rules to allow traffic to flow from external (to the cluster) entities and

NodePort Service, the source side of the rule must contain all nodes in the cluster.
For example, given the following setup:
- Worker nodes in the cluster are labeled as Role: Worker Node
- Clients accessing the Service running in the Kubernetes cluster are labeled Role: Client
- The NodePort Service is labeled Role: Ingress

• Normally, the rule would be written as Role: Client -> Role: Ingress. However, for this beta1
release the rule must also include all nodes in the cluster to work correctly: Role: Client +
Role: Worker Node -> Role: Ingress.

Updates for Core for Kubernetes 5.0.0-LA
• C-VEN [156]
• Kubelink [157]
• Security Information for Core for Kubernetes 5.0.0-LA [158]

C-VEN

Resolved Issues

• Scaling a Deployment with changed labels was not being updated on PCE (E-107274)
After deploying a workload with a non-existing label, create labels on the PCE and wait a
few minutes before updating and applying the YAML to change the number of replicas. The
deployment was not properly updated on the PCE. This issue is resolved.

Known Issues

• When C-VEN starts first, a 404 from PCE when getting CLAS token (E-109259)
When C-VEN is started first, it tries to contact the PCE in order to obtain CLAS token, but
receives a 404 error. This is expected behavior for this scenario, which is only momentary.
Kubelink eventually starts normally, and C-VEN obtains the CLAS tokens as expected.

Illumio Core for Kubernetes

156

• Helm install fails with Helm version 3.12.2 but works with 3.10 (E-108128)
When installing with Helm version 3.12.2, the installation fails with a YAML parse error.
Workaround: Use Helm version 3.10, or version 3.12.3 or later.

• Re-adding node does not re-pair it (E-98120)
After deleting a node and re-adding the same node, the node does not reappear, and
previously established policy disappears from the node.
Workaround: Uninstall and re-install Illumio Core for Kubernetes from scratch with the node
present.

Kubelink

Resolved Issues

• CLAS on IKS with Calico, the flow of ClusterIP is not displayed correctly (E-109238)
In a CLAS environment on IKS with Calico, when running traffic to a clusterIP service from
a pod, flows were being displayed incorrectly. Sometimes flows were incorrectly shown as
Allowed. Other times, flows that should not be present were being shown as Blocked. This
issue is resolved.

• Kubernetes cluster falsely detected as an OpenShift cluster (E-107910)
After deployment, Kubelink falsely detected a Kubernetes cluster as an OpenShift cluster
based on misinterpretations of installed VolumeReplicationClass and VolumeReplications
APIs on the cluster. This issue is resolved.

• Problem when label from PCE was deleted after Kubelink starts (E-107779)
When creating a new workload on PCE, Kubelink uses cached or preloaded labels to label
a workload. However, if the label was deleted before the workload was actually created, the
PCE responded with a 406 status error. This issue is resolved.

• Kubelink did not properly apply label mappings with PCE using two-sided management
ports (E-105391)
Label mappings were not properly applied when using the LabelMap CRD if the PCE used
two-sided management ports. This issue is resolved.

Known Issues

• CLAS: NodePort - pod rules are not removed after disabling rule (E-111689)
After disabling a NodePort rule that opens it to outside VMs, iptables entries for pods
with a virtual service's targetPort are not removed as expected. The pod is still opened.
Host iptables are removed, so traffic does not go through, but the pod ports stay opened
towards original IPs.
There is no workaround available.

• Non-CLAS mode: Failed to clean up the pods (E-109687)
After deleting a non-CLAS container cluster, the cluster gets deleted but Container Work-
loads are not deleted, and remain present.

• CLAS-mode Kubelink pod gets restarted once when deploying Illumio Core for Kuber-
netes (E-109284)
The Kubelink pod is restarted after deploying Illumio Core for Kubernetes in CLAS mode.
There is no workaround. Kubelink runs properly after this single restart.

• CLAS: Container Workload Profile label change is not applied to Kubernetes Workloads,
only to Virtual Services (E-109168)
In CLAS environments, after changing a label in a Container Workload Profile, the Ku-
bernetes Workloads that are managed by that Profile do not have their labels changed
as expected. No changes to these Kubernetes Workloads occur even when the Profile
is changed to "No Label Allowed;" the original labels remain in the Kubernetes Work-

Illumio Core for Kubernetes

157

loads. However, Virtual Services managed by that profile do successfully have their labels
changed properly.
No workaround is available.

• CLAS - The etcd pod crashes when node reboots (E-106236)
The etcd pod crashes if one of the nodes in the cluster is rebooted.
There is no workaround available.

Security Information for Core for Kubernetes 5.0.0-LA

For information about security issues, security advisories, and other security guidance per-
taining to this release, see Illumio’s Knowledge Base in Illumio's Support portal.

Illumio Core for Kubernetes

158

Illumio Core for Kubernetes Release Notes 4.3.0

What's New in Kubernetes 4.3.0

These release notes describe the resolved issues and related information for the 4.3.0 release
of Illumio Core for Kubernetes, formerly known as Illumio Containerized VEN, or C-VEN.

Illumio Core for Kubernetes also includes the related required component, Kubelink. Because
of this heritage, many references to this product as "C-VEN" are still used throughout the
documentation.

Here are the new and changed items in this release:

• New Kubelink 3.3.1
This Kubernetes 4.3.0 release includes an upgraded Kubelink component, version 3.3.1 .

• New C-VEN 22.5.14
This Kubernetes 4.3.0 release includes an upgraded C-VEN component, version 22.5.14.

NOTE
C-VEN 22.5.14 requires PCE version 22.5.0 or later, and supports PCE 23.3.0
or later.

Security Information

For information about security issues, security advisories, and other security guidance per-
taining to this release, see Illumio’s Knowledge Base in Illumio's Support portal.

Base Image Upgraded

The C-VEN base OS image is upgraded to minimal UBI for Red Hat Linux
7.9-979.1679306063, which is available at https://catalog.redhat.com/software/contain-
ers/ubi7/ubi-minimal/5c3594f7dd19c775cddfa777.

Customers are advised to upgrade to Core for Kubernetes 4.1.0 or higher for these security
fixes.

Product Version

Compatible PCE Versions: 22.5.0 and later releases

Current Illumio Core for Kubernetes Version: 4.3.0, which includes:

Illumio Core for Kubernetes

159

• C-VEN version: 22.5.14
• Kubelink version: 3.3.1
• Helm Chart version: 4.3.0

Illumio Core release numbering uses the following format: “a.b.c-d+e”.

• “a.b”: Standard or LTS release number, for example, “2.2”
• “.c”: Maintenance release number, for example, “.1”
• “-d”: Optional descriptor for pre-release versions, for example, “preview2”

Updates for Core for Kubernetes 4.3.0

C-VEN

Resolved Issues

• C-VEN support report does not contain container workload firewalls (E-106932)
VEN support reports for C-VENs were missing the active firewall information for all con-
tainer workloads. This issue is resolved. Support reports now include full firewalls from each
network namespace, as gathered by iptables-save and ipset list output.

• Conntrack tear-down for containers with policy updates (E-44832)
Although policy was changed to block a container workload from talking to another, traffic
was still passing between the workloads, due to a conntrack connection remaining incor-
rectly active. This issue is resolved. Conntrack connections on sessions affected by a policy
change are now properly torn down.

Known Issue

• C-VENs not automatically cleaned up after AKS upgrade (E-103895)
After upgrading an AKS cluster, sometimes a few duplicate C-VENs might not be automat-
ically removed as part of the normal upgrade process, and remain in the PCE as "non-ac-
tive." Note there is no compromise to the security or other functionality of the product.
Workaround: Manually prune the extra unmigrated C-VENs from the PCE by clicking the
Unpair button for each of them.

Kubelink

Resolved Issue

• Kubelink does not pair with PCE when a separate management port is used (E-107001)
Kubelink would crash after start when the PCE had front_end_management_https_port
set to 9443 instead of 8443, because of a missing label_map URL. This issue is resolved.

Known Issue

• Kubelink does not properly apply label mappings with PCE using two-sided manage-
ment ports (E-105391)
Label mappings are not properly applied when using the LabelMap CRD if the PCE uses
two-sided management ports.

Illumio Core for Kubernetes

160

Workaround: Use the label map feature only with a PCE that uses only one management
port.

Illumio Core for Kubernetes

161

Legal Notice

Copyright © 2025 Illumio 920 De Guigne Drive, Sunnyvale, CA 94085. All rights reserved.

The content in this documentation is provided for informational purposes only and is provi-
ded "as is," without warranty of any kind, expressed or implied of Illumio. The content in this
documentation is subject to change without notice.

Resources

• Legal information
• Trademarks statements
• Patent statements
• License statements

Contact Information

• Contact Illumio
• Contact Illumio Legal
• Contact Illumio Documentation

Illumio Core for Kubernetes

162

https://www.illumio.com/legal-information
https://www.illumio.com/legal/trademarks
https://www.illumio.com/legal/patents
https://www.illumio.com/legal/eula
https://www.illumio.com/support/contact
mailto:legal@illumio.com
mailto:doc-feedback@illumio.com

	Illumio Core for Kubernetes
	Table of Contents
	Kubernetes and Openshift
	Overview of Containers in Illumio Core
	Before You Begin
	Recommended Skills
	Architecture
	Containerized VEN (C-VEN)
	Kubelink
	Cluster Local Actor Store (CLAS)
	CLAS Degraded Mode
	Kubernetes Workloads
	Container Workloads
	Workloads
	Virtual Services
	Container Cluster
	Container Workload Profiles

	Configure Labels for Namespaces, Pods, and Services
	Use Container Workload Profiles
	Configure New Container Workload Profiles
	Dynamic Creation of a Profile
	Manual Pre-creation of a Profile
	Set Enforcement
	Labels Restrictions for Kubernetes Namespaces
	Options for Assigning Labels with a Container Workload Profile
	Example: Assigning Labels with a Container Workload Profile
	Adding, Editing, or Removing Labels
	Possible Labels for the Example

	Effect of Upgrading the PCE to Core 21.1.0 or Later

	Container Workload Profile Restriction
	Using Annotations
	Deployments
	Services
	Annotation Examples

	DaemonSets and ReplicaSets
	Static Pods

	Using Annotations in CLAS
	Migration

	Deployment with Helm Chart (Core for Kubernetes 3.0.0 and Later)
	Helm Chart Deployment Overview
	Host and Cluster Requirements
	Supported Configurations for On-premises and IaaS
	Privileges
	Host-Level
	C-VEN
	Kubelink

	Cluster-Level
	Namespace
	C-VEN
	Kubelink

	Prepare Your Environment
	Unique Machine ID
	Create Labels
	Create a ConfigMap to Store Your Root CA Certificate
	Prerequisites
	Download the Root CA Certificate
	Create a ConfigMap in the Kubernetes Cluster

	Configure Calico in Append Mode

	Create a Container Cluster in the PCE
	Create a Container Cluster
	Configure a Container Workload Profile Template

	Create a Pairing Profile for Your Cluster Nodes
	Map Kubernetes Node or Workload Labels to Illumio Labels
	Kubernetes Node Labels or Kubernetes Workload Labels
	Label Mapping CRD
	Example Label Maps
	Show the Source of a PCE Label

	Deploy with Helm Chart
	Important Optional Parameters
	Flat Networks: networkType
	CLAS Mode: clusterMode
	CLAS Degraded Mode: disableDegradedMode and degradedModePolicyFail
	CLAS etcd Internal Storage Size: sizeGi

	Re-Label Your Cluster Nodes
	Generating YAML Manifests for Manual Deployment
	Install Helm Tool
	Generate Files
	Remove Unpair DaemonSet and Job Objects

	Deployment for C-VEN Versions 21.5.15 or Earlier
	Host and Cluster Requirements
	Supported Configurations for On-premises and IaaS
	Privileges
	Host-Level
	C-VEN
	Kubelink

	Cluster-Level
	Namespace
	C-VEN
	Kubelink

	Prepare Your Environment
	Unique Machine ID
	Create Labels
	Push Kubelink and C-VEN Images to Your Container Registry
	Create Illumio Namespace
	
	Authenticate Kubernetes Cluster with Container Registry
	Create a ConfigMap to Store Your Root CA Certificate
	Prerequisites
	Download the Root CA Certificate
	Create a configmap in Kubernetes Cluster

	Configure Calico in Append Mode

	Create a Container Cluster in the PCE
	Create a Container Cluster
	Configure a Container Workload Profile Template

	Deploy C-VENs in Your Cluster
	Prerequisites
	Create a Pairing Profile for Your Cluster Nodes
	Configure C-VEN Secret
	Deploy C-VENs

	Re-Label Your Cluster Nodes

	Configure Security Policies for Containerized Environments
	IP and FQDN Lists
	FQDN Services for Kubernetes
	IP Lists for Kubernetes
	FQDN Services for OpenShift
	IP Lists for OpenShift

	Rules for Kubernetes or OpenShift Clusters
	Kubernetes
	OpenShift

	Rules and Traffic Considerations with CLAS
	Mandatory Rules
	Mandatory rules for namespace enforcement

	ClusterIP Rules
	General Traffic View Changes
	CLAS Traffic Limitations

	Rules for Containerized Applications
	Access Services from within the Cluster
	Kubernetes
	OpenShift

	Access Services from Outside the Cluster
	Kubernetes
	OpenShift

	Outbound Connections
	Kubernetes and OpenShift

	Liveness Probes
	Kubernetes and OpenShift

	NodePort Support on Kubernetes and OpenShift

	Rules for Persistent Storage
	Kubernetes
	OpenShift

	Local Policy Convergence Controller
	About the Controller Behavior
	Configure the Illumio Readiness Gate
	Timer Customization
	Cluster Wide Timer Customization
	Pre-pod Timer Customization

	Track the State of the Readiness Gate
	Example: State of the Readiness Gate

	Firewall Coexistence on Pods

	Upgrade and Uninstallation
	Migrate from Previous C-VEN Versions (21.5.15 or Earlier)
	Annotate and Label Resources
	Delete C-VEN DaemonSet
	Install Helm

	Upgrade and Uninstall Helm Chart Deployments
	Upgrade Helm Chart Deployments
	Uninstall Helm Chart Deployments

	Upgrade and Uninstall Non-Helm Chart Deployments
	Upgrade Illumio Components
	Upgrade Kubelink
	Upgrade C-VEN

	Uninstall Illumio from Your Cluster
	Unpair C-VENs
	Delete Illumio Resources
	Delete C-VEN Resources
	Delete Kubelink Resources
	Delete Illumio Namespace

	Upgrade to CLAS Architecture
	Pre-upgrade Policy Check
	ClusterIP Services as Kubernetes Workloads

	Upgrade Strategy
	Upgrade Steps (on Each Kubernetes Cluster)

	Prepare OpenShift for Illumio Core
	Unique Machine ID
	Create Labels
	Create Pairing Profiles
	Deploy Kubelink
	Prerequisites
	Create Container Cluster
	Configure Container Workload Profile
	Configure Kubelink Secret
	Deploy Kubelink

	Implement Kubelink with a Private PKI
	Prerequisites
	Download the Root CA Certificate
	Create a configmap in Kubernetes Cluster
	Modify Kubelink Manifest File to Use Certificate

	Install and Pair VENs for Containers
	Manage OpenShift Namespaces
	
	Using Annotations
	For Deployment Configurations (Pods)
	For Service Configurations (Services)

	Daemonsets and Replicasets

	Troubleshooting
	Kubelink Support Bundle
	Helm deployment (and uninstall) fails with C-VEN stuck in ContainerCreating state
	Failed Authentication with the Container Registry
	Kubelink Pod in CrashLoopBackOff State
	Container Cluster in Error
	Verify Machine IDs on All Nodes
	Generate a New Machine ID

	Pods and Services Not Detected
	Pods Stuck in Terminating State
	Enable Firewall Coexistence
	
	Troubleshooting CLAS Mode Architecture
	Aggregating Logs from Kubelink and C-VEN Pods
	Loki and Grafana
	Fluent Bit

	Kubelink Monitoring and Troubleshooting
	Kubelink Process
	Kubelink Startup Log Messages
	Verify Kubelink Deployment
	PCE-Kubelink Connection and Heartbeat
	Additional Kubelink Monitoring
	API request succeeds
	Information sent to PCE

	Setting Log Verbosity

	Known Limitations

	Illumio Core for Kubernetes Release Notes 5.3
	What's New in Illumio Core for Kubernetes 5.3.1
	Product Version
	Release Types and Numbering

	What's New in Release 5.3.1
	Limitations
	Base Image Upgraded

	Resolved Issues in 5.3.1
	Resolved Issues

	Illumio Core for Kubernetes Release Notes 5.2
	About Illumio Core for Kubernetes 5.2
	Product Version

	Updates for Core for Kubernetes 5.2.3
	Kubelink
	Resolved Issue

	Updates for Core for Kubernetes 5.2.2
	C-VEN
	Resolved Issues

	What's New in Release 5.2.1
	Updates for Core for Kubernetes 5.2.1
	Kubelink
	Resolved Issues

	C-VEN
	Resolved Issues

	What's New in Release 5.2.0
	Resource Allocation Guidelines
	Small-scale resource allocation
	Medium-scale resource allocation
	Large-scale resource allocation

	"Wait For Policy" Feature
	Behavior
	Configuration

	Updates for Core for Kubernetes 5.2.0
	Kubelink
	Resolved Issues

	C-VEN
	Resolved Issues

	Illumio Core for Kubernetes Release Notes 5.1
	Core for Kubernetes 5.1.10
	Limitations
	Updates for Core for Kubernetes 5.1.10
	Kubelink
	Resolved Issues

	Updates for Core for Kubernetes 5.1.7
	Kubelink
	Resolved Issues

	Updates for Core for Kubernetes 5.1.3
	Kubelink
	Resolved Issues

	Updates for Core for Kubernetes 5.1.2
	Kubelink
	Resolved Issues

	Updates for Core for Kubernetes 5.1.0
	What's New in the 5.1.0 Release
	C-VEN
	Resolved Issue
	Known Issues

	Kubelink
	Resolved Issues
	Known Issues

	Security Information for Core for Kubernetes 5.1

	Illumio Core for Kubernetes Release Notes 5.0.0
	About Illumio Core for Kubernetes 5.0
	Product Version
	What's New in C-VEN and Kubelink
	NodePort Limitations
	Updates for Core for Kubernetes 5.0.0-LA
	C-VEN
	Resolved Issues
	Known Issues

	Kubelink
	Resolved Issues
	Known Issues

	Security Information for Core for Kubernetes 5.0.0-LA

	Illumio Core for Kubernetes Release Notes 4.3.0
	What's New in Kubernetes 4.3.0
	Security Information
	Base Image Upgraded

	Product Version
	Updates for Core for Kubernetes 4.3.0
	C-VEN
	Resolved Issues
	Known Issue

	Kubelink
	Resolved Issue
	Known Issue

	Legal Notice

